BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 30063112)

  • 1. 3D printing and modeling of congenital heart defects: A technical review.
    Townsend K; Pietila T
    Birth Defects Res; 2018 Aug; 110(13):1091-1097. PubMed ID: 30063112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Congenital Heart Models Created With Free Software and a Desktop Printer: Assessment of Accuracy, Technical Aspects, and Clinical Use.
    Perens G; Chyu J; McHenry K; Yoshida T; Finn JP
    World J Pediatr Congenit Heart Surg; 2020 Nov; 11(6):797-801. PubMed ID: 33164685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printed models in congenital heart disease.
    Cantinotti M; Valverde I; Kutty S
    Int J Cardiovasc Imaging; 2017 Jan; 33(1):137-144. PubMed ID: 27677762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilizing Three-Dimensional Printing Technology to Assess the Feasibility of High-Fidelity Synthetic Ventricular Septal Defect Models for Simulation in Medical Education.
    Costello JP; Olivieri LJ; Krieger A; Thabit O; Marshall MB; Yoo SJ; Kim PC; Jonas RA; Nath DS
    World J Pediatr Congenit Heart Surg; 2014 Jul; 5(3):421-6. PubMed ID: 24958045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using 3D Physical Modeling to Plan Surgical Corrections of Complex Congenital Heart Defects.
    Vodiskar J; Kütting M; Steinseifer U; Vazquez-Jimenez JF; Sonntag SJ
    Thorac Cardiovasc Surg; 2017 Jan; 65(1):31-35. PubMed ID: 27177266
    [No Abstract]   [Full Text] [Related]  

  • 6. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments.
    Lau IWW; Liu D; Xu L; Fan Z; Sun Z
    PLoS One; 2018; 13(3):e0194333. PubMed ID: 29561912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples.
    Abudayyeh I; Gordon B; Ansari MM; Jutzy K; Stoletniy L; Hilliard A
    J Interv Cardiol; 2018 Jun; 31(3):375-383. PubMed ID: 28948646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Innovation in medicine: opportunities of 3D modeling and printing for perioperative care of cardio and thoracic surgical patients.
    Barabás JI; Ghimessy ÁK; Rényi-Vámos F; Kocsis Á; Agócs L; Mészáros L; Pukacsik D; Andi J; Laki A; Vörös F; Hartyánszky I; Panajotu A; Fazekas L; Szabolcs Z; Merkely B
    Orv Hetil; 2019 Dec; 160(50):1967-1975. PubMed ID: 31814422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease.
    Loke YH; Harahsheh AS; Krieger A; Olivieri LJ
    BMC Med Educ; 2017 Mar; 17(1):54. PubMed ID: 28284205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study.
    Su W; Xiao Y; He S; Huang P; Deng X
    BMC Med Educ; 2018 Aug; 18(1):178. PubMed ID: 30068323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional printing and virtual surgery for congenital heart procedural planning.
    Moore RA; Riggs KW; Kourtidou S; Schneider K; Szugye N; Troja W; D'Souza G; Rattan M; Bryant R; Taylor MD; Morales DLS
    Birth Defects Res; 2018 Aug; 110(13):1082-1090. PubMed ID: 30079634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Assessment of 3D Printed Model Accuracy in Delineating Congenital Heart Disease.
    Lee S; Squelch A; Sun Z
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33673159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital Design and 3D Printing of Aortic Arch Reconstruction in HLHS for Surgical Simulation and Training.
    Chen SA; Ong CS; Malguria N; Vricella LA; Garcia JR; Hibino N
    World J Pediatr Congenit Heart Surg; 2018 Jul; 9(4):454-458. PubMed ID: 29945510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing in congenital heart disease: A systematic review.
    Lau I; Sun Z
    J Med Radiat Sci; 2018 Sep; 65(3):226-236. PubMed ID: 29453808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Application of 3D printing techniques in treatment of congenital heart disease].
    Xu J; Shu Q
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2019 Jul; 48(5):573-579. PubMed ID: 31901034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current and future applications of 3D printing in congenital cardiology and cardiac surgery.
    Milano EG; Capelli C; Wray J; Biffi B; Layton S; Lee M; Caputo M; Taylor AM; Schievano S; Biglino G
    Br J Radiol; 2019 Feb; 92(1094):20180389. PubMed ID: 30325646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of 3D Printed Cardiac Models for Medical Student Education in Congenital Heart Disease: Across a Spectrum of Disease Severity.
    Smerling J; Marboe CC; Lefkowitch JH; Pavlicova M; Bacha E; Einstein AJ; Naka Y; Glickstein J; Farooqi KM
    Pediatr Cardiol; 2019 Aug; 40(6):1258-1265. PubMed ID: 31240370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hands-on surgical training of congenital heart surgery using 3-dimensional print models.
    Yoo SJ; Spray T; Austin EH; Yun TJ; van Arsdell GS
    J Thorac Cardiovasc Surg; 2017 Jun; 153(6):1530-1540. PubMed ID: 28268011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential for machine learning algorithms to improve and reduce the cost of 3-dimensional printing for surgical planning.
    Huff TJ; Ludwig PE; Zuniga JM
    Expert Rev Med Devices; 2018 May; 15(5):349-356. PubMed ID: 29723481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innovations in Preoperative Planning: Insights into Another Dimension Using 3D Printing for Cardiac Disease.
    Farooqi KM; Mahmood F
    J Cardiothorac Vasc Anesth; 2018 Aug; 32(4):1937-1945. PubMed ID: 29277300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.