These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30063139)

  • 1. On the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces. Part I: Sliding Length and Maximum Spreading Diameter.
    Aboud DGK; Kietzig AM
    Langmuir; 2018 Aug; 34(34):9879-9888. PubMed ID: 30063139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces. Part II: Restitution Coefficient and Contact Time.
    Aboud DGK; Kietzig AM
    Langmuir; 2018 Aug; 34(34):9889-9896. PubMed ID: 29957965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drop Impact on Oblique Superhydrophobic Surfaces with Two-Tier Roughness.
    Zhang R; Hao P; He F
    Langmuir; 2017 Apr; 33(14):3556-3567. PubMed ID: 28326784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.
    Aboud DG; Kietzig AM
    Langmuir; 2015 Sep; 31(36):10100-11. PubMed ID: 26318736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces.
    Aboud DGK; Kietzig AM
    Langmuir; 2021 Apr; 37(15):4678-4689. PubMed ID: 33797264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drop impact and rebound dynamics on an inclined superhydrophobic surface.
    Yeong YH; Burton J; Loth E; Bayer IS
    Langmuir; 2014 Oct; 30(40):12027-38. PubMed ID: 25216298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oblique Impacts of Nanodroplets upon Surfaces.
    Han N; Huang B; Sun B; He X
    Langmuir; 2022 Nov; 38(43):13093-13102. PubMed ID: 36268907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horizontal Motion of a Superhydrophobic Substrate Affects the Drop Bouncing Dynamics.
    Zhan H; Lu C; Liu C; Wang Z; Lv C; Liu Y
    Phys Rev Lett; 2021 Jun; 126(23):234503. PubMed ID: 34170170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drop impact on inclined superhydrophobic surfaces.
    LeClear S; LeClear J; Abhijeet ; Park KC; Choi W
    J Colloid Interface Sci; 2016 Jan; 461():114-121. PubMed ID: 26397917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces.
    Hu Z; Chu F; Lin Y; Wu X
    Langmuir; 2022 Feb; 38(4):1540-1549. PubMed ID: 35072484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.
    Mohammadi M; Tembely M; Dolatabadi A
    Langmuir; 2017 Feb; 33(8):1816-1825. PubMed ID: 28177630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetries in the spread of drops impacting on hydrophobic micropillar arrays.
    Robson S; Willmott GR
    Soft Matter; 2016 May; 12(21):4853-65. PubMed ID: 27140067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture.
    Vaikuntanathan V; Sivakumar D
    Langmuir; 2016 Mar; 32(10):2399-409. PubMed ID: 26885767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water drop friction on superhydrophobic surfaces.
    Olin P; Lindström SB; Pettersson T; Wågberg L
    Langmuir; 2013 Jul; 29(29):9079-89. PubMed ID: 23721176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Gravity on the Sliding Angle of Water Drops on Nanopillared Superhydrophobic Surfaces.
    Li H; Yan T; Fichthorn KA
    Langmuir; 2020 Aug; 36(33):9916-9925. PubMed ID: 32787051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells.
    Zhang R; Hao P; Zhang X; He F
    Soft Matter; 2016 Jun; 12(26):5808-17. PubMed ID: 27306824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention Forces for Drops on Microstructured Superhydrophobic Surfaces.
    Humayun S; Maynes RD; Crockett J; Iverson BD
    Langmuir; 2022 Dec; 38(51):15960-15972. PubMed ID: 36516440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.