These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Synthetic-echo time postprocessing technique for generating images with variable T2-weighted contrast: diagnosis of meniscal and cartilage abnormalities of the knee. Andreisek G; White LM; Theodoropoulos JS; Naraghi A; Young N; Zhao CY; Mamisch TC; Sussman MS Radiology; 2010 Jan; 254(1):188-99. PubMed ID: 20032152 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Kijowski R; Blankenbaker DG; Munoz Del Rio A; Baer GS; Graf BK Radiology; 2013 May; 267(2):503-13. PubMed ID: 23297335 [TBL] [Abstract][Full Text] [Related]
6. Good interrater reliability of a new grading system in detecting traumatic bone marrow lesions in the knee by dual energy CT virtual non-calcium images. Cao JX; Wang YM; Kong XQ; Yang C; Wang P Eur J Radiol; 2015 Jun; 84(6):1109-15. PubMed ID: 25816992 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI. Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835 [TBL] [Abstract][Full Text] [Related]
8. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry. Norman B; Pedoia V; Majumdar S Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598 [TBL] [Abstract][Full Text] [Related]
9. Preoperative MRI of Articular Cartilage in the Knee: A Practical Approach. Fritz RC; Chaudhari AS; Boutin RD J Knee Surg; 2020 Nov; 33(11):1088-1099. PubMed ID: 33124010 [TBL] [Abstract][Full Text] [Related]
10. Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3T system scientific research. Milewski MD; Smitaman E; Moukaddam H; Katz LD; Essig DA; Medvecky MJ; Haims AH Eur J Radiol; 2012 Jul; 81(7):1637-43. PubMed ID: 21683539 [TBL] [Abstract][Full Text] [Related]
11. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176 [TBL] [Abstract][Full Text] [Related]
12. Usefulness of the fast spin-echo three-point Dixon (mDixon) image of the knee joint on 3.0-T MRI: comparison with conventional fast spin-echo T2 weighted image. Park HJ; Lee SY; Rho MH; Chung EC; Ahn JH; Park JH; Lee IS Br J Radiol; 2016 Jun; 89(1062):20151074. PubMed ID: 27008281 [TBL] [Abstract][Full Text] [Related]
13. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. Disler DG; McCauley TR; Wirth CR; Fuchs MD AJR Am J Roentgenol; 1995 Aug; 165(2):377-82. PubMed ID: 7618561 [TBL] [Abstract][Full Text] [Related]
14. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Kijowski R; Blankenbaker DG; Davis KW; Shinki K; Kaplan LD; De Smet AA Radiology; 2009 Mar; 250(3):839-48. PubMed ID: 19164121 [TBL] [Abstract][Full Text] [Related]
15. 3.0-T evaluation of knee cartilage by using three-dimensional IDEAL GRASS imaging: comparison with fast spin-echo imaging. Kijowski R; Blankenbaker DG; Woods MA; Shinki K; De Smet AA; Reeder SB Radiology; 2010 Apr; 255(1):117-27. PubMed ID: 20173102 [TBL] [Abstract][Full Text] [Related]
16. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. Disler DG; McCauley TR; Kelman CG; Fuchs MD; Ratner LM; Wirth CR; Hospodar PP AJR Am J Roentgenol; 1996 Jul; 167(1):127-32. PubMed ID: 8659356 [TBL] [Abstract][Full Text] [Related]
17. Modified radial-search algorithm for segmentation of tibiofemoral cartilage in MR images of patients with subchondral lesion. Thaha R; Jogi SP; Rajan S; Mahajan V; Venugopal VK; Mehndiratta A; Singh A Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):403-413. PubMed ID: 31927688 [TBL] [Abstract][Full Text] [Related]
18. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. Bredella MA; Tirman PF; Peterfy CG; Zarlingo M; Feller JF; Bost FW; Belzer JP; Wischer TK; Genant HK AJR Am J Roentgenol; 1999 Apr; 172(4):1073-80. PubMed ID: 10587150 [TBL] [Abstract][Full Text] [Related]
19. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping. Hannila I; Nieminen MT; Rauvala E; Tervonen O; Ojala R Acta Radiol; 2007 May; 48(4):444-8. PubMed ID: 17453527 [TBL] [Abstract][Full Text] [Related]
20. Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning. Liu F; Guan B; Zhou Z; Samsonov A; Rosas H; Lian K; Sharma R; Kanarek A; Kim J; Guermazi A; Kijowski R Radiol Artif Intell; 2019 May; 1(3):180091. PubMed ID: 32076658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]