These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 30063195)

  • 21. Routine clinical knee MR reports: comparison of diagnostic performance at 1.5 T and 3.0 T for assessment of the articular cartilage.
    Mandell JC; Rhodes JA; Shah N; Gaviola GC; Gomoll AH; Smith SE
    Skeletal Radiol; 2017 Nov; 46(11):1487-1498. PubMed ID: 28717928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging--diagnostic performance compared with that of conventional MR imaging at 3.0 T.
    Kijowski R; Davis KW; Woods MA; Lindstrom MJ; De Smet AA; Gold GE; Busse RF
    Radiology; 2009 Aug; 252(2):486-95. PubMed ID: 19703886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep convolutional neural network for segmentation of knee joint anatomy.
    Zhou Z; Zhao G; Kijowski R; Liu F
    Magn Reson Med; 2018 Dec; 80(6):2759-2770. PubMed ID: 29774599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
    Grøvik E; Yi D; Iv M; Tong E; Rubin D; Zaharchuk G
    J Magn Reson Imaging; 2020 Jan; 51(1):175-182. PubMed ID: 31050074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MRI T2 Mapping of the Knee Providing Synthetic Morphologic Images: Comparison to Conventional Turbo Spin-Echo MRI.
    Roux M; Hilbert T; Hussami M; Becce F; Kober T; Omoumi P
    Radiology; 2019 Dec; 293(3):620-630. PubMed ID: 31573393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee.
    Soellner ST; Goldmann A; Muelheims D; Welsch GH; Pachowsky ML
    Osteoarthritis Cartilage; 2017 Nov; 25(11):1841-1849. PubMed ID: 28801212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully Automatic Knee Joint Segmentation and Quantitative Analysis for Osteoarthritis from Magnetic Resonance (MR) Images Using a Deep Learning Model.
    Tang X; Guo D; Liu A; Wu D; Liu J; Xu N; Qin Y
    Med Sci Monit; 2022 Jun; 28():e936733. PubMed ID: 35698440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation of MRI T2 mapping sequence with knee pain location in young patients with normal standard MRI.
    Dautry R; Bousson V; Manelfe J; Perozziello A; Boyer P; Loriaut P; Koch P; Silvestre A; Schouman-Claeys E; Laredo JD; Dallaudière B
    JBR-BTR; 2014; 97(1):11-6. PubMed ID: 24765764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI.
    Lee SY; Jee WH; Kim SK; Koh IJ; Kim JM
    Acta Radiol; 2010 May; 51(4):455-61. PubMed ID: 20350249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the Articular Cartilage of the Knee Joint Using an Isotropic Resolution 3D Fast Spin-Echo Sequence With Conventional and Radial Reformatted Images.
    Gustas CN; Blankenbaker DG; Rio AM; Winalski CS; Kijowski R
    AJR Am J Roentgenol; 2015 Aug; 205(2):371-9. PubMed ID: 26204290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Knee imaging: Rapid three-dimensional fast spin-echo using compressed sensing.
    Kijowski R; Rosas H; Samsonov A; King K; Peters R; Liu F
    J Magn Reson Imaging; 2017 Jun; 45(6):1712-1722. PubMed ID: 27726244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects.
    Pedoia V; Norman B; Mehany SN; Bucknor MD; Link TM; Majumdar S
    J Magn Reson Imaging; 2019 Feb; 49(2):400-410. PubMed ID: 30306701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cartilaginous defects of the femorotibial joint: accuracy of coronal short inversion time inversion-recovery MR sequence.
    Jungius KP; Schmid MR; Zanetti M; Hodler J; Koch P; Pfirrmann CW
    Radiology; 2006 Aug; 240(2):482-8. PubMed ID: 16801363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical value of routine use of thin-section 3D MRI using 3D FSE sequences with a variable flip angle technique for internal derangements of the knee joint at 3T.
    Kudo H; Inaoka T; Kitamura N; Nakatsuka T; Kasuya S; Kasai R; Tozawa M; Nakagawa K; Terada H
    Magn Reson Imaging; 2013 Oct; 31(8):1309-17. PubMed ID: 23684241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical usefulness of adding 3D cartilage imaging sequences to a routine knee MR protocol.
    Kijowski R; Blankenbaker DG; Woods M; Del Rio AM; De Smet AA; Reeder SB
    AJR Am J Roentgenol; 2011 Jan; 196(1):159-67. PubMed ID: 21178062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diagnostic Performance of Three-dimensional MRI for Depicting Cartilage Defects in the Knee: A Meta-Analysis.
    Shakoor D; Guermazi A; Kijowski R; Fritz J; Jalali-Farahani S; Mohajer B; Eng J; Demehri S
    Radiology; 2018 Oct; 289(1):71-82. PubMed ID: 30015587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated techniques for visualization and mapping of articular cartilage in MR images of the osteoarthritic knee: a base technique for the assessment of microdamage and submicro damage.
    Cashman PM; Kitney RI; Gariba MA; Carter ME
    IEEE Trans Nanobioscience; 2002 Mar; 1(1):42-51. PubMed ID: 16689221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis.
    Yoshioka H; Stevens K; Genovese M; Dillingham MF; Lang P
    Radiology; 2004 Apr; 231(1):31-8. PubMed ID: 15068938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auto-segmentation of the tibia and femur from knee MR images via deep learning and its application to cartilage strain and recovery.
    Kim-Wang SY; Bradley PX; Cutcliffe HC; Collins AT; Crook BS; Paranjape CS; Spritzer CE; DeFrate LE
    J Biomech; 2023 Mar; 149():111473. PubMed ID: 36791514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative.
    Ambellan F; Tack A; Ehlke M; Zachow S
    Med Image Anal; 2019 Feb; 52():109-118. PubMed ID: 30529224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.