These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30063363)

  • 1. Surfactant Aggregates Encapsulating and Modulating: An Effective Way to Generate Selective and Discriminative Fluorescent Sensors.
    Fan J; Ding L; Fang Y
    Langmuir; 2019 Jan; 35(2):326-341. PubMed ID: 30063363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent Ensemble Sensors and Arrays Based on Surfactant Aggregates Encapsulating Pyrene-Derived Fluorophores for Differentiation Applications.
    Qiao M; Fan J; Ding L; Fang Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18395-18412. PubMed ID: 33871966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PBI derivatives/surfactant-based fluorescent ensembles: Sensing of multiple aminoglycoside antibiotics and interaction mechanism studies.
    Zhang R; Yan Z; Xue Z; Xu W; Qiao M; Ding L; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 321():124735. PubMed ID: 38955066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-system based discriminative optical sensors: different strategies and versatile applications.
    Fan J; Ding L
    Analyst; 2018 Aug; 143(16):3775-3788. PubMed ID: 29974083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of fluorescent materials for chemical sensing.
    Basabe-Desmonts L; Reinhoudt DN; Crego-Calama M
    Chem Soc Rev; 2007 Jun; 36(6):993-1017. PubMed ID: 17534482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers.
    Du Y; Li B; Wang E
    Acc Chem Res; 2013 Feb; 46(2):203-13. PubMed ID: 23214491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation-Switching Strategy for Promoting Fluorescent Sensing of Biologically Relevant Species: A Simple Near-Infrared Cyanine Dye Highly Sensitive and Selective for ATP.
    Zhang P; Zhu MS; Luo H; Zhang Q; Guo LE; Li Z; Jiang YB
    Anal Chem; 2017 Jun; 89(11):6210-6215. PubMed ID: 28480717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprobes based on AIE fluorogens.
    Ding D; Li K; Liu B; Tang BZ
    Acc Chem Res; 2013 Nov; 46(11):2441-53. PubMed ID: 23742638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imidazolium-Modified Bispyrene-Based Fluorescent Aggregates for Discrimination of Multiple Anions in Aqueous Solution.
    Qiao M; Zhang R; Liu S; Liu J; Ding L; Fang Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32706-32718. PubMed ID: 35817757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometry of surfactant aggregates.
    Ceraulo L; Giorgi G; Liveri VT; Bongiorno D; Indelicato S; Di Gaudio F; Indelicato S
    Eur J Mass Spectrom (Chichester); 2011; 17(6):525-41. PubMed ID: 22274944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Alive" dyes as fluorescent sensors: fluorophore, mechanism, receptor and images in living cells.
    Qian X; Xiao Y; Xu Y; Guo X; Qian J; Zhu W
    Chem Commun (Camb); 2010 Sep; 46(35):6418-36. PubMed ID: 20589288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein binding-induced surfactant aggregation variation: a new strategy of developing fluorescent aqueous sensor for proteins.
    Hu W; Ding L; Cao J; Liu L; Wei Y; Fang Y
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4728-36. PubMed ID: 25664917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent Ensemble Based on Bispyrene Fluorophore and Surfactant Assemblies: Sensing and Discriminating Proteins in Aqueous Solution.
    Fan J; Ding L; Bo Y; Fang Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22487-96. PubMed ID: 26414441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzimidazolium-Based Self-Assembled Fluorescent Aggregates for Sensing and Catalytic Degradation of Diethylchlorophosphate.
    Singh A; Raj P; Singh N
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28641-28651. PubMed ID: 27731616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ternary system based on fluorophore-surfactant assemblies--Cu²⁺ for highly sensitive and selective detection of arginine in aqueous solution.
    Cao J; Ding L; Hu W; Chen X; Chen X; Fang Y
    Langmuir; 2014 Dec; 30(50):15364-72. PubMed ID: 25453500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis.
    Yang Q; Li J; Wang X; Peng H; Xiong H; Chen L
    Biosens Bioelectron; 2018 Jul; 112():54-71. PubMed ID: 29698809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charged supramolecular assemblies of surfactant molecules in gas phase.
    Bongiorno D; Ceraulo L; Indelicato S; Turco Liveri V; Indelicato S
    Mass Spectrom Rev; 2016; 35(1):170-87. PubMed ID: 26113001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide-sensitized molecularly imprinted opto-polymers for charge-transfer fluorescent sensing of cyanoguanidine.
    Liu H; Zhou K; Chen X; Wang J; Wang S; Sun B
    Food Chem; 2017 Nov; 235():14-20. PubMed ID: 28554618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Glimpse of Our Journey into the Design of Optical Probes in Self-assembled Surfactant Aggregates.
    Dey N; Bhattacharya S
    Chem Rec; 2016 Aug; 16(4):1934-49. PubMed ID: 27276345
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.