These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30063378)

  • 21. A Review of Machine Learning for Near-Infrared Spectroscopy.
    Zhang W; Kasun LC; Wang QJ; Zheng Y; Lin Z
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Challenges in Model Development for Meat Composition Using Multipoint NIR Spectroscopy from At-Line to In-Line Monitoring.
    Dixit Y; Casado-Gavalda MP; Cama-Moncunill R; Cullen PJ; Sullivan C
    J Food Sci; 2017 Jul; 82(7):1557-1562. PubMed ID: 28598587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Authentication of Antibiotics Using Portable Near-Infrared Spectroscopy and Multivariate Data Analysis.
    Assi S; Arafat B; Lawson-Wood K; Robertson I
    Appl Spectrosc; 2021 Apr; 75(4):434-444. PubMed ID: 32830991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geographic Origin Discrimination of Millet Using Vis-NIR Spectroscopy Combined with Machine Learning Techniques.
    Kabir MH; Guindo ML; Chen R; Liu F
    Foods; 2021 Nov; 10(11):. PubMed ID: 34829048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feature expansion by a continuous restricted Boltzmann machine for near-infrared spectrometric calibration.
    Harrington PB
    Anal Chim Acta; 2018 Jun; 1010():20-28. PubMed ID: 29447667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accuracy and biases in predicting the chemical and physical traits of many types of cheeses using different visible and near-infrared spectroscopic techniques and spectrum intervals.
    Stocco G; Cipolat-Gotet C; Ferragina A; Berzaghi P; Bittante G
    J Dairy Sci; 2019 Nov; 102(11):9622-9638. PubMed ID: 31477307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions.
    Gutiérrez S; Tardaguila J; Fernández-Novales J; Diago MP
    Sensors (Basel); 2016 Feb; 16(2):236. PubMed ID: 26891304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of near-infrared hyperspectral imaging to discriminate different geographical origins of Chinese wolfberries.
    Yin W; Zhang C; Zhu H; Zhao Y; He Y
    PLoS One; 2017; 12(7):e0180534. PubMed ID: 28704423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Fast detection of sugar content in fruit vinegar using NIR spectroscopy].
    Wang L; Li ZF; He Y; Liu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1810-3. PubMed ID: 18975809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid determination of the fat, moisture, and protein contents in homogenized chicken eggs based on near-infrared reflectance spectroscopy.
    Zhao Q; Lv X; Jia Y; Chen Y; Xu G; Qu L
    Poult Sci; 2018 Jun; 97(6):2239-2245. PubMed ID: 29562300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid and Green Classification Method of Bacteria Using Machine Learning and NIR Spectroscopy.
    Farias LR; Panero JDS; Riss JSP; Correa APF; Vital MJS; Panero FDS
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Portable NIR Spectrometer for Prediction of Palm Oil Acidity.
    Kaufmann KC; Favero FF; de Vasconcelos MAM; Godoy HT; Sampaio KA; Barbin DF
    J Food Sci; 2019 Mar; 84(3):406-411. PubMed ID: 30758058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Markov random field based approach to the identification of meat and bone meal in feed by near-infrared spectroscopic imaging.
    Jiang X; Yang Z; Han L
    Anal Bioanal Chem; 2014 Jul; 406(19):4705-14. PubMed ID: 24828981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional visible/near-infrared correlation spectroscopy study of thermal treatment of chicken meats.
    Liu Y; Chen YR; Ozaki Y
    J Agric Food Chem; 2000 Mar; 48(3):901-8. PubMed ID: 10725171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing different processed meats for adulterants using visible-near-infrared spectroscopy.
    Rady A; Adedeji A
    Meat Sci; 2018 Feb; 136():59-67. PubMed ID: 29096288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and comparison of classification models on VIS-NIR hyperspectral imaging spectra for qualitative detection of the Staphylococcus aureus in fresh chicken breast.
    Qiu R; Zhao Y; Kong D; Wu N; He Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121838. PubMed ID: 36108407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning approaches for large scale classification of produce.
    Gupta O; Das AJ; Hellerstein J; Raskar R
    Sci Rep; 2018 Mar; 8(1):5226. PubMed ID: 29588477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid and nondestructive fraud detection of palm oil adulteration with Sudan dyes using portable NIR spectroscopic techniques.
    Teye E; Elliott C; Sam-Amoah LK; Mingle C
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Nov; 36(11):1589-1596. PubMed ID: 31535956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman spectroscopy and machine learning for the classification of breast cancers.
    Zhang L; Li C; Peng D; Yi X; He S; Liu F; Zheng X; Huang WE; Zhao L; Huang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120300. PubMed ID: 34455388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Near-infrared spectroscopy detects woody breast syndrome in chicken fillets by the markers protein content and degree of water binding.
    Wold JP; Måge I; Løvland A; Sanden KW; Ofstad R
    Poult Sci; 2019 Jan; 98(1):480-490. PubMed ID: 30165657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.