These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 30063413)
1. Classification of a Naïve Bayesian Fingerprint model to predict reproductive toxicity Marzo M; Benfenati E SAR QSAR Environ Res; 2018 Aug; 29(8):631-645. PubMed ID: 30063413 [TBL] [Abstract][Full Text] [Related]
2. Development of QSAR models using artificial neural network analysis for risk assessment of repeated-dose, reproductive, and developmental toxicities of cosmetic ingredients. Hisaki T; Aiba Née Kaneko M; Yamaguchi M; Sasa H; Kouzuki H J Toxicol Sci; 2015 Apr; 40(2):163-80. PubMed ID: 25786522 [TBL] [Abstract][Full Text] [Related]
3. Developing novel in silico prediction models for assessing chemical reproductive toxicity using the naïve Bayes classifier method. Zhang H; Shen C; Liu RZ; Mao J; Liu CT; Mu B J Appl Toxicol; 2020 Sep; 40(9):1198-1209. PubMed ID: 32207182 [TBL] [Abstract][Full Text] [Related]
4. Absorption, Distribution, Metabolism, Excretion, and Toxicity Evaluation in Drug Discovery. 14. Prediction of Human Pregnane X Receptor Activators by Using Naive Bayesian Classification Technique. Shi H; Tian S; Li Y; Li D; Yu H; Zhen X; Hou T Chem Res Toxicol; 2015 Jan; 28(1):116-25. PubMed ID: 25495542 [TBL] [Abstract][Full Text] [Related]
5. A comprehensive model for reproductive and developmental toxicity hazard identification: II. Construction of QSAR models to predict activities of untested chemicals. Matthews EJ; Kruhlak NL; Daniel Benz R; Ivanov J; Klopman G; Contrera JF Regul Toxicol Pharmacol; 2007 Mar; 47(2):136-55. PubMed ID: 17175082 [TBL] [Abstract][Full Text] [Related]
6. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility. Zhou D; Alelyunas Y; Liu R J Chem Inf Model; 2008 May; 48(5):981-7. PubMed ID: 18465850 [TBL] [Abstract][Full Text] [Related]
7. A comprehensive model for reproductive and developmental toxicity hazard identification: I. Development of a weight of evidence QSAR database. Matthews EJ; Kruhlak NL; Daniel Benz R; Contrera JF Regul Toxicol Pharmacol; 2007 Mar; 47(2):115-35. PubMed ID: 17207562 [TBL] [Abstract][Full Text] [Related]
8. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery. Fang J; Yang R; Gao L; Zhou D; Yang S; Liu AL; Du GH J Chem Inf Model; 2013 Nov; 53(11):3009-20. PubMed ID: 24144102 [TBL] [Abstract][Full Text] [Related]
9. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints. Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549 [TBL] [Abstract][Full Text] [Related]
10. Development and evaluation of in silico prediction model for drug-induced respiratory toxicity by using naïve Bayes classifier method. Zhang H; Ma JX; Liu CT; Ren JX; Ding L Food Chem Toxicol; 2018 Nov; 121():593-603. PubMed ID: 30261216 [TBL] [Abstract][Full Text] [Related]
11. Prediction of acute toxicity in fish by using QSAR methods and chemical modes of action. Lozano S; Lescot E; Halm MP; Lepailleur A; Bureau R; Rault S J Enzyme Inhib Med Chem; 2010 Apr; 25(2):195-203. PubMed ID: 19874208 [TBL] [Abstract][Full Text] [Related]
12. In silico prediction of multiple-category classification model for cytochrome P450 inhibitors and non-inhibitors using machine-learning method. Lee JH; Basith S; Cui M; Kim B; Choi S SAR QSAR Environ Res; 2017 Oct; 28(10):863-874. PubMed ID: 29183231 [TBL] [Abstract][Full Text] [Related]
13. Categorical QSAR Models for skin sensitization based upon local lymph node assay classification measures part 2: 4D-fingerprint three-state and two-2-state logistic regression models. Li Y; Pan D; Liu J; Kern PS; Gerberick GF; Hopfinger AJ; Tseng YJ Toxicol Sci; 2007 Oct; 99(2):532-44. PubMed ID: 17675333 [TBL] [Abstract][Full Text] [Related]
14. ANN and Bayesian classification models for virtual screening of endocrine-disrupting chemicals. Nowicki P; Klos J; Kokot Z Comb Chem High Throughput Screen; 2014; 17(5):407-16. PubMed ID: 24547995 [TBL] [Abstract][Full Text] [Related]
15. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction. Hamadache M; Benkortbi O; Hanini S; Amrane A; Khaouane L; Si Moussa C J Hazard Mater; 2016 Feb; 303():28-40. PubMed ID: 26513561 [TBL] [Abstract][Full Text] [Related]
16. Development of novel prediction model for drug-induced mitochondrial toxicity by using naïve Bayes classifier method. Zhang H; Yu P; Ren JX; Li XB; Wang HL; Ding L; Kong WB Food Chem Toxicol; 2017 Dec; 110():122-129. PubMed ID: 29042293 [TBL] [Abstract][Full Text] [Related]
17. A naive bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing. Sun H J Med Chem; 2005 Jun; 48(12):4031-9. PubMed ID: 15943476 [TBL] [Abstract][Full Text] [Related]
18. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods. Matthews EJ; Kruhlak NL; Cimino MC; Benz RD; Contrera JF Regul Toxicol Pharmacol; 2006 Mar; 44(2):97-110. PubMed ID: 16352383 [TBL] [Abstract][Full Text] [Related]
19. In silico prediction of chemical reproductive toxicity using machine learning. Jiang C; Yang H; Di P; Li W; Tang Y; Liu G J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929 [TBL] [Abstract][Full Text] [Related]
20. Quantitative structure-activity relationship for prediction of the toxicity of phenols on Photobacterium phosphoreum. Li X; Wang Z; Liu H; Yu H Bull Environ Contam Toxicol; 2012 Jul; 89(1):27-31. PubMed ID: 22562268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]