BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 30064010)

  • 1. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy.
    Egbenya DL; Hussain S; Lai YC; Xia J; Anderson AE; Davanger S
    Mol Cell Neurosci; 2018 Oct; 92():93-103. PubMed ID: 30064010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats.
    Malkin SL; Amakhin DV; Veniaminova EA; Kim KKh; Zubareva OE; Magazanik LG; Zaitsev AV
    Neuroscience; 2016 Jul; 327():146-55. PubMed ID: 27109923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK.
    Chen Z; Xiong C; Pancyr C; Stockwell J; Walz W; Cayabyab FS
    J Neurosci; 2014 Jul; 34(29):9621-43. PubMed ID: 25031403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
    Gryder DS; Castaneda DC; Rogawski MA
    J Neurochem; 2005 Sep; 94(6):1728-38. PubMed ID: 16045445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The AMPA Receptor Subunit GluA1 is Required for CA1 Hippocampal Long-Term Potentiation but is not Essential for Synaptic Transmission.
    Terashima A; Suh YH; Isaac JTR
    Neurochem Res; 2019 Mar; 44(3):549-561. PubMed ID: 29098531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PICK1 facilitates lasting reduction in GluA2 concentration in the hippocampus during chronic epilepsy.
    Lorgen JØ; Egbenya DL; Hammer J; Davanger S
    Epilepsy Res; 2017 Nov; 137():25-32. PubMed ID: 28888867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorbs2 regulates seizure activity by influencing AMPAR-mediated excitatory synaptic transmission in temporal lobe epilepsy.
    Ban Y; Yang X; Tan D; Gong C; Gao Y; Yuan J; Chen Y; Wang Y; Xu T
    Neurochem Int; 2024 Jun; 176():105727. PubMed ID: 38555055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function and expression in hippocampus in a rat model of attention-deficit/hyperactivity disorder (ADHD).
    Medin T; Jensen V; Skare Ø; Storm-Mathisen J; Hvalby Ø; Bergersen LH
    Behav Brain Res; 2019 Mar; 360():209-215. PubMed ID: 30552946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The organization of AMPA receptor subunits at the postsynaptic membrane.
    Jacob AL; Weinberg RJ
    Hippocampus; 2015 Jul; 25(7):798-812. PubMed ID: 25524891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of NMDA and AMPA receptor subunits in rat dorsal and ventral hippocampus.
    Pandis C; Sotiriou E; Kouvaras E; Asprodini E; Papatheodoropoulos C; Angelatou F
    Neuroscience; 2006 Jun; 140(1):163-75. PubMed ID: 16542781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the Properties of the Rat Hippocampus Glutamatergic System in the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy.
    Diespirov GP; Postnikova TY; Griflyuk AV; Kovalenko AA; Zaitsev AV
    Biochemistry (Mosc); 2023 Mar; 88(3):353-363. PubMed ID: 37076282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antidepressant-induced increase in GluA2 expression does not translate in changes of AMPA receptor-mediated synaptic transmission at CA3/CA1 synapses in rats.
    Gerace E; Polenzani L; Magnani M; Zianni E; Stocca G; Gardoni F; Pellegrini-Giampietro DE; Corradetti R
    Neuropharmacology; 2023 Feb; 223():109307. PubMed ID: 36334766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential glutamate receptor expression and function in the hippocampus, anterior temporal lobe and neocortex in a pilocarpine model of temporal lobe epilepsy.
    Dubey V; Dey S; Dixit AB; Tripathi M; Chandra PS; Banerjee J
    Exp Neurol; 2022 Jan; 347():113916. PubMed ID: 34752784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses.
    Takumi Y; Ramírez-León V; Laake P; Rinvik E; Ottersen OP
    Nat Neurosci; 1999 Jul; 2(7):618-24. PubMed ID: 10409387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labile Calcium-Permeable AMPA Receptors Constitute New Glutamate Synapses Formed in Hypothalamic Neuroendocrine Cells during Salt Loading.
    Di S; Jiang Z; Wang S; Harrison LM; Castro-Echeverry E; Stuart TC; Wolf ME; Tasker JG
    eNeuro; 2019; 6(4):. PubMed ID: 31300543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synapse-specific changes in Arc and BDNF in rat hippocampus following chronic temporal lobe epilepsy.
    Egbenya DL; Hussain S; Lai YC; Anderson AE; Davanger S
    Neurosci Res; 2023 Jun; 191():1-12. PubMed ID: 36535366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sexually dimorphic long-term effects of an early life experience on AMPA receptor subunit expression in rat brain.
    Katsouli S; Stamatakis A; Giompres P; Kouvelas ED; Stylianopoulou F; Mitsacos A
    Neuroscience; 2014 Jan; 257():49-64. PubMed ID: 24211798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms.
    Taoro-Gonzalez L; Arenas YM; Cabrera-Pastor A; Felipo V
    J Neuroinflammation; 2018 Feb; 15(1):36. PubMed ID: 29422059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic plasticity through activation of GluA3-containing AMPA-receptors.
    Renner MC; Albers EH; Gutierrez-Castellanos N; Reinders NR; van Huijstee AN; Xiong H; Lodder TR; Kessels HW
    Elife; 2017 Aug; 6():. PubMed ID: 28762944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TARPs gamma-2 and gamma-7 are essential for AMPA receptor expression in the cerebellum.
    Yamazaki M; Fukaya M; Hashimoto K; Yamasaki M; Tsujita M; Itakura M; Abe M; Natsume R; Takahashi M; Kano M; Sakimura K; Watanabe M
    Eur J Neurosci; 2010 Jun; 31(12):2204-20. PubMed ID: 20529126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.