These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30064104)

  • 1. Tryptophan-like fluorescence as a measure of microbial contamination risk in groundwater.
    Nowicki S; Lapworth DJ; Ward JST; Thomson P; Charles K
    Sci Total Environ; 2019 Jan; 646():782-791. PubMed ID: 30064104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water.
    Ward JST; Lapworth DJ; Read DS; Pedley S; Banda ST; Monjerezi M; Gwengweya G; MacDonald AM
    Sci Total Environ; 2021 Jan; 750():141284. PubMed ID: 33182170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale survey of seasonal drinking water quality in Malawi using in situ tryptophan-like fluorescence and conventional water quality indicators.
    Ward JST; Lapworth DJ; Read DS; Pedley S; Banda ST; Monjerezi M; Gwengweya G; MacDonald AM
    Sci Total Environ; 2020 Nov; 744():140674. PubMed ID: 32755770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time detection of faecally contaminated drinking water with tryptophan-like fluorescence: defining threshold values.
    Sorensen JPR; Baker A; Cumberland SA; Lapworth DJ; MacDonald AM; Pedley S; Taylor RG; Ward JST
    Sci Total Environ; 2018 May; 622-623():1250-1257. PubMed ID: 29890592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications.
    Khamis K; Sorensen JP; Bradley C; Hannah DM; Lapworth DJ; Stevens R
    Environ Sci Process Impacts; 2015 Apr; 17(4):740-52. PubMed ID: 25756677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in drinking water than faecal indicator organisms.
    Sorensen JPR; Nayebare J; Carr AF; Lyness R; Campos LC; Ciric L; Goodall T; Kulabako R; Curran CMR; MacDonald AM; Owor M; Read DS; Taylor RG
    Water Res; 2021 Nov; 206():117734. PubMed ID: 34655933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan-like and humic-like fluorophores are extracellular in groundwater: implications as real-time faecal indicators.
    Sorensen JPR; Carr AF; Nayebare J; Diongue DML; Pouye A; Roffo R; Gwengweya G; Ward JST; Kanoti J; Okotto-Okotto J; van der Marel L; Ciric L; Faye SC; Gaye CB; Goodall T; Kulabako R; Lapworth DJ; MacDonald AM; Monjerezi M; Olago D; Owor M; Read DS; Taylor RG
    Sci Rep; 2020 Sep; 10(1):15379. PubMed ID: 32958794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water.
    Sorensen JPR; Vivanco A; Ascott MJ; Gooddy DC; Lapworth DJ; Read DS; Rushworth CM; Bucknall J; Herbert K; Karapanos I; Gumm LP; Taylor RG
    Water Res; 2018 Jun; 137():301-309. PubMed ID: 29554534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are sanitation interventions a threat to drinking water supplies in rural India? An application of tryptophan-like fluorescence.
    Sorensen JPR; Sadhu A; Sampath G; Sugden S; Dutta Gupta S; Lapworth DJ; Marchant BP; Pedley S
    Water Res; 2016 Jan; 88():923-932. PubMed ID: 26618806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ fluorescence spectroscopy indicates total bacterial abundance and dissolved organic carbon.
    Sorensen JPR; Diaw MT; Pouye A; Roffo R; Diongue DML; Faye SC; Gaye CB; Fox BG; Goodall T; Lapworth DJ; MacDonald AM; Read DS; Ciric L; Taylor RG
    Sci Total Environ; 2020 Oct; 738():139419. PubMed ID: 32521357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A continuous, in-situ, near-time fluorescence sensor coupled with a machine learning model for detection of fecal contamination risk in drinking water: Design, characterization and field validation.
    Bedell E; Harmon O; Fankhauser K; Shivers Z; Thomas E
    Water Res; 2022 Jul; 220():118644. PubMed ID: 35667167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies.
    Sorensen JP; Lapworth DJ; Marchant BP; Nkhuwa DC; Pedley S; Stuart ME; Bell RA; Chirwa M; Kabika J; Liemisa M; Chibesa M
    Water Res; 2015 Sep; 81():38-46. PubMed ID: 26026711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unravelling organic matter and nutrient biogeochemistry in groundwater-fed rivers under baseflow conditions: Uncertainty in in situ high-frequency analysis.
    Bieroza MZ; Heathwaite AL
    Sci Total Environ; 2016 Dec; 572():1520-1533. PubMed ID: 26897611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can Sanitary Inspection Surveys Predict Risk of Microbiological Contamination of Groundwater Sources? Evidence from Shallow Tubewells in Rural Bangladesh.
    Ercumen A; Naser AM; Arnold BF; Unicomb L; Colford JM; Luby SP
    Am J Trop Med Hyg; 2017 Mar; 96(3):561-568. PubMed ID: 28115666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions.
    Foppen JW; Schijven JF
    Water Res; 2006 Feb; 40(3):401-26. PubMed ID: 16434075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal Stability of Escherichia coli Concentrations in Waters of Two Irrigation Ponds in Maryland.
    Pachepsky Y; Kierzewski R; Stocker M; Sellner K; Mulbry W; Lee H; Kim M
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using chemical, microbial and fluorescence techniques to understand contaminant sources and pathways to wetlands in a conservation site.
    Rhymes J; Jones L; Lapworth DJ; White D; Fenner N; McDonald JE; Perkins TL
    Sci Total Environ; 2015 Apr; 511():703-10. PubMed ID: 25616189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple fluorescence approaches to identify rapid changes in microbial indicators at karst springs.
    Vucinic L; O'Connell D; Dubber D; Coxon C; Gill L
    J Contam Hydrol; 2023 Mar; 254():104129. PubMed ID: 36634484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of bacteria in water using PLS analysis of emission spectra of fluorescence and excitation-emission matrices.
    Nakar A; Schmilovitch Z; Vaizel-Ohayon D; Kroupitski Y; Borisover M; Sela Saldinger S
    Water Res; 2020 Feb; 169():115197. PubMed ID: 31670087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suitability of the traditional microbial indicators and their enumerating methods in the assessment of fecal pollution of subtropical freshwater environments.
    Chao KK; Chao CC; Chao WL
    J Microbiol Immunol Infect; 2003 Dec; 36(4):288-93. PubMed ID: 14723262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.