BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 30064208)

  • 1. Highly Active C
    Hernández Lozada NJ; Lai RY; Simmons TR; Thomas KA; Chowdhury R; Maranas CD; Pfleger BF
    ACS Synth Biol; 2018 Sep; 7(9):2205-2215. PubMed ID: 30064208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeric Fatty Acyl-Acyl Carrier Protein Thioesterases Provide Mechanistic Insight into Enzyme Specificity and Expression.
    Ziesack M; Rollins N; Shah A; Dusel B; Webster G; Silver PA; Way JC
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29549102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matching Protein Interfaces for Improved Medium-Chain Fatty Acid Production.
    Sarria S; Bartholow TG; Verga A; Burkart MD; Peralta-Yahya P
    ACS Synth Biol; 2018 May; 7(5):1179-1187. PubMed ID: 29722970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.
    Zhang X; Li M; Agrawal A; San KY
    Metab Eng; 2011 Nov; 13(6):713-22. PubMed ID: 22001432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-guided reshaping of the acyl binding pocket of 'TesA thioesterase enhances octanoic acid production in E. coli.
    Deng X; Chen L; Hei M; Liu T; Feng Y; Yang GY
    Metab Eng; 2020 Sep; 61():24-32. PubMed ID: 32339761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering.
    Yuan L; Voelker TA; Hawkins DJ
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10639-43. PubMed ID: 7479856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of strategies to narrow the product chain-length distribution of microbially synthesized free fatty acids.
    Jindra MA; Choe K; Chowdhury R; Kong R; Ghaffari S; Sweedler JV; Pfleger BF
    Metab Eng; 2023 May; 77():21-31. PubMed ID: 36863604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of substrate specificity in a catalytically diverse family of acyl-ACP thioesterases from plants.
    Kalinger RS; Rowland O
    BMC Plant Biol; 2023 Jan; 23(1):1. PubMed ID: 36588156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.
    Jing F; Zhao L; Yandeau-Nelson MD; Nikolau BJ
    Nat Commun; 2018 Feb; 9(1):860. PubMed ID: 29491418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of novel acyl-ACP thioesterase gene ClFATB1 from Cinnamomum longepaniculatum.
    Lin N; Ai TB; Gao JH; Fan LH; Wang SH; Chen F
    Biochemistry (Mosc); 2013 Nov; 78(11):1298-303. PubMed ID: 24460945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of active site residues implies a two-step catalytic mechanism for acyl-ACP thioesterase.
    Jing F; Yandeau-Nelson MD; Nikolau BJ
    Biochem J; 2018 Dec; 475(23):3861-3873. PubMed ID: 30409825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.
    Feng Y; Zhang Y; Wang Y; Liu J; Liu Y; Cao X; Xue S
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3173-3182. PubMed ID: 29470618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational Changes of Acyl Carrier Protein Switch the Chain Length Preference of Acyl-ACP Thioesterase ChFatB2.
    Yang T; Yang Y; Yang M; Ren J; Xue C; Feng Y; Xue S
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids.
    Grisewood MJ; Hernandez Lozada NJ; Thoden JB; Gifford NP; Mendez-Perez D; Schoenberger HA; Allan MF; Floy ME; Lai RY; Holden HM; Pfleger BF; Maranas CD
    ACS Catal; 2017 Jun; 7(6):3837-3849. PubMed ID: 29375928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Functional Characterization of the PaaI Thioesterase from Streptococcus pneumoniae Reveals a Dual Specificity for Phenylacetyl-CoA and Medium-chain Fatty Acyl-CoAs and a Novel CoA-induced Fit Mechanism.
    Khandokar YB; Srivastava P; Sarker S; Swarbrick CMD; Aragao D; Cowieson N; Forwood JK
    J Biol Chem; 2016 Jan; 291(4):1866-1876. PubMed ID: 26538563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil.
    Dehesh K; Edwards P; Hayes T; Cranmer AM; Fillatti J
    Plant Physiol; 1996 Jan; 110(1):203-10. PubMed ID: 8587983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia).
    Ghosh SK; Bhattacharjee A; Jha JK; Mondal AK; Maiti MK; Basu A; Ghosh D; Ghosh S; Sen SK
    Plant Physiol Biochem; 2007 Dec; 45(12):887-97. PubMed ID: 17977002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase.
    Joshi AK; Witkowski A; Berman HA; Zhang L; Smith S
    Biochemistry; 2005 Mar; 44(10):4100-7. PubMed ID: 15751987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase.
    Voelker TA; Davies HM
    J Bacteriol; 1994 Dec; 176(23):7320-7. PubMed ID: 7961504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity.
    Yan Q; Cordell WT; Jindra MA; Courtney DK; Kuckuk MK; Chen X; Pfleger BF
    Nat Commun; 2022 Mar; 13(1):1619. PubMed ID: 35338129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.