These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30064221)

  • 1. Junction Plasmon Driven Population Inversion of Molecular Vibrations: A Picosecond Surface-Enhanced Raman Spectroscopy Study.
    Crampton KT; Fast A; Potma EO; Apkarian VA
    Nano Lett; 2018 Sep; 18(9):5791-5796. PubMed ID: 30064221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational and electronic heating in nanoscale junctions.
    Ward DR; Corley DA; Tour JM; Natelson D
    Nat Nanotechnol; 2011 Jan; 6(1):33-8. PubMed ID: 21151112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule tip-enhanced Raman spectroscopy of C
    Cirera B; Liu S; Park Y; Hamada I; Wolf M; Shiotari A; Kumagai T
    Phys Chem Chem Phys; 2024 Aug; 26(32):21325-21331. PubMed ID: 39082139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Enhanced Nonlinear Raman Processes for Advanced Vibrational Probing.
    Kneipp J; Kneipp K
    ACS Nano; 2024 Aug; 18(32):20851-20860. PubMed ID: 39088308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addressing molecular optomechanical effects in nanocavity-enhanced Raman scattering beyond the single plasmonic mode.
    Zhang Y; Esteban R; Boto RA; Urbieta M; Arrieta X; Shan C; Li S; Baumberg JJ; Aizpurua J
    Nanoscale; 2021 Jan; 13(3):1938-1954. PubMed ID: 33442716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics of single molecule fluctuations in surface enhanced Raman spectroscopy active liquids.
    Maher RC; Dalley M; Le Ru EC; Cohen LF; Etchegoin PG; Hartigan H; Brown RJ; Milton MJ
    J Chem Phys; 2004 Nov; 121(18):8901-10. PubMed ID: 15527355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational line shape effects in plasmon-enhanced stimulated Raman spectroscopies.
    Mandal A; Ziegler LD
    J Chem Phys; 2021 Nov; 155(19):194701. PubMed ID: 34800946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-Domain Proof of the Existence of Atomic-Scale SERS Hot-Spots.
    Shin HH; Yeon GJ; Choi HK; Park SM; Lee KS; Kim ZH
    Nano Lett; 2018 Jan; 18(1):262-271. PubMed ID: 29206468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities.
    Schmidt MK; Esteban R; González-Tudela A; Giedke G; Aizpurua J
    ACS Nano; 2016 Jun; 10(6):6291-8. PubMed ID: 27203727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the Mechanism of Plasmon Photocatalysis via Multiquantum Vibrational Excitation.
    Jeong J; Shin HH; Kim ZH
    ACS Nano; 2024 Sep; 18(36):25290-25301. PubMed ID: 39185823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Coherent Anti-Stokes Raman Scattering Microscopy Employing Dual-Wavelength Nanofocused Ultrafast Plasmon Pulses.
    Tomita K; Kojima Y; Kannari F
    Nano Lett; 2018 Feb; 18(2):1366-1372. PubMed ID: 29376374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry.
    Miller JD; Slipchenko MN; Meyer TR; Stauffer HU; Gord JR
    Opt Lett; 2010 Jul; 35(14):2430-2. PubMed ID: 20634853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor.
    Zong C; Xie Y; Zhang M; Huang Y; Yang C; Cheng JX
    J Chem Phys; 2021 Jan; 154(3):034201. PubMed ID: 33499625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and vibrational surface-enhanced Raman scattering: from atomically defined Au(111) and (100) to roughened Au.
    Inagaki M; Isogai T; Motobayashi K; Lin KQ; Ren B; Ikeda K
    Chem Sci; 2020 Aug; 11(36):9807-9817. PubMed ID: 34094241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide: saturation and Stark effects.
    Chai N; Lucht RP; Kulatilaka WD; Roy S; Gord JR
    J Chem Phys; 2010 Aug; 133(8):084310. PubMed ID: 20815572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations.
    Cui L; Zhu Y; Nordlander P; Di Ventra M; Natelson D
    Nano Lett; 2021 Mar; 21(6):2658-2665. PubMed ID: 33710898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-stokes Raman study of vibrational cooling dynamics in the primary photochemistry of rhodopsin.
    Kim JE; Mathies RA
    J Phys Chem A; 2002 Sep; 106(37):8508-15. PubMed ID: 16552447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational Relaxation in beta-Carotene Probed by Picosecond Stokes and Anti-Stokes Resonance Raman Spectroscopy.
    McCamant DW; Kim JE; Mathies RA
    J Phys Chem A; 2002 Jun; 106(25):6030-8. PubMed ID: 17235377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule vibrational pumping in SERS.
    Galloway CM; Le Ru EC; Etchegoin PG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7372-80. PubMed ID: 19690708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.