These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Localized network centrality and essentiality in the yeast-protein interaction network. Park K; Kim D Proteomics; 2009 Nov; 9(22):5143-54. PubMed ID: 19771559 [TBL] [Abstract][Full Text] [Related]
4. Identification of essential proteins from weighted protein-protein interaction networks. Li M; Wang JX; Wang H; Pan Y J Bioinform Comput Biol; 2013 Jun; 11(3):1341002. PubMed ID: 23796179 [TBL] [Abstract][Full Text] [Related]
5. An ensemble framework for identifying essential proteins. Zhang X; Xiao W; Acencio ML; Lemke N; Wang X BMC Bioinformatics; 2016 Aug; 17(1):322. PubMed ID: 27557880 [TBL] [Abstract][Full Text] [Related]
6. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks. Li M; Lu Y; Wang J; Wu FX; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):372-83. PubMed ID: 26357224 [TBL] [Abstract][Full Text] [Related]
7. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network. Mistry D; Wise RP; Dickerson JA PLoS One; 2017; 12(11):e0187091. PubMed ID: 29121073 [TBL] [Abstract][Full Text] [Related]
8. Prediction of essential proteins based on overlapping essential modules. Zhao B; Wang J; Li M; Wu FX; Pan Y IEEE Trans Nanobioscience; 2014 Dec; 13(4):415-24. PubMed ID: 25122840 [TBL] [Abstract][Full Text] [Related]
9. A new method for the discovery of essential proteins. Zhang X; Xu J; Xiao WX PLoS One; 2013; 8(3):e58763. PubMed ID: 23555595 [TBL] [Abstract][Full Text] [Related]
10. Functional centrality: detecting lethality of proteins in protein interaction networks. Tew KL; Li XL; Tan SH Genome Inform; 2007; 19():166-77. PubMed ID: 18546514 [TBL] [Abstract][Full Text] [Related]
11. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Li M; Zheng R; Zhang H; Wang J; Pan Y Methods; 2014 Jun; 67(3):325-33. PubMed ID: 24565748 [TBL] [Abstract][Full Text] [Related]
12. A local average connectivity-based method for identifying essential proteins from the network level. Li M; Wang J; Chen X; Wang H; Pan Y Comput Biol Chem; 2011 Jun; 35(3):143-50. PubMed ID: 21704260 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Essential Proteins Based on Local Interaction Density. Qi Y; Luo J IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1170-1182. PubMed ID: 26701891 [TBL] [Abstract][Full Text] [Related]
14. Centralities in simplicial complexes. Applications to protein interaction networks. Estrada E; Ross GJ J Theor Biol; 2018 Feb; 438():46-60. PubMed ID: 29128505 [TBL] [Abstract][Full Text] [Related]
15. Hubs and Bottlenecks in Protein-Protein Interaction Networks. Nithya C; Kiran M; Nagarajaram HA Methods Mol Biol; 2024; 2719():227-248. PubMed ID: 37803121 [TBL] [Abstract][Full Text] [Related]
16. cytoHubba: identifying hub objects and sub-networks from complex interactome. Chin CH; Chen SH; Wu HH; Ho CW; Ko MT; Lin CY BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S11. PubMed ID: 25521941 [TBL] [Abstract][Full Text] [Related]
17. Identification of essential proteins based on edge clustering coefficient. Wang J; Li M; Wang H; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1070-80. PubMed ID: 22084147 [TBL] [Abstract][Full Text] [Related]
18. Consistency and differences between centrality measures across distinct classes of networks. Oldham S; Fulcher B; Parkes L; Arnatkevic Iūtė A; Suo C; Fornito A PLoS One; 2019; 14(7):e0220061. PubMed ID: 31348798 [TBL] [Abstract][Full Text] [Related]
19. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. Zotenko E; Mestre J; O'Leary DP; Przytycka TM PLoS Comput Biol; 2008 Aug; 4(8):e1000140. PubMed ID: 18670624 [TBL] [Abstract][Full Text] [Related]