BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30064900)

  • 1. Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques.
    Howlader MS; Rai N; Todd French W
    Bioresour Technol; 2018 Nov; 267():743-755. PubMed ID: 30064900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Micro-Organisms.
    Patel A; Mikes F; Matsakas L
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29958398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel rapid ultrasonication-microwave treatment for total lipid extraction from wet oleaginous yeast biomass for sustainable biodiesel production.
    Patel A; Arora N; Pruthi V; Pruthi PA
    Ultrason Sonochem; 2019 Mar; 51():504-516. PubMed ID: 30082251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of microbial cell disruption using pressurized CO
    Howlader MS; DuBien J; Hassan EB; Rai N; French WT
    Bioprocess Biosyst Eng; 2019 May; 42(5):763-776. PubMed ID: 30710227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress on lipid extraction from wet algal biomass for biodiesel production.
    Ghasemi Naghdi F; González González LM; Chan W; Schenk PM
    Microb Biotechnol; 2016 Nov; 9(6):718-726. PubMed ID: 27194507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer.
    Kwak M; Kang SG; Hong WK; Han JI; Chang YK
    Bioprocess Biosyst Eng; 2018 May; 41(5):671-678. PubMed ID: 29453513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.
    Chen L; Li R; Ren X; Liu T
    Bioresour Technol; 2016 Aug; 214():138-143. PubMed ID: 27132220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments of downstream processing for microbial lipids and conversion to biodiesel.
    Yellapu SK; Bharti ; Kaur R; Kumar LR; Tiwari B; Zhang X; Tyagi RD
    Bioresour Technol; 2018 May; 256():515-528. PubMed ID: 29472122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous cell disruption and lipid extraction in a microalgal biomass using a nonpolar tertiary amine.
    Huang WC; Kim JD
    Bioresour Technol; 2017 May; 232():142-145. PubMed ID: 28219051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving energetics of triacylglyceride extraction from wet oleaginous microbes.
    Willis RM; McCurdy AT; Ogborn MK; Wahlen BD; Quinn JC; Pease LF; Seefeldt LC
    Bioresour Technol; 2014 Sep; 167():416-24. PubMed ID: 25000397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-efficient pretreatments for the enhanced conversion of microalgal biomass to biofuels.
    Ha GS; El-Dalatony MM; Kurade MB; Salama ES; Basak B; Kang D; Roh HS; Lim H; Jeon BH
    Bioresour Technol; 2020 Aug; 309():123333. PubMed ID: 32305842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodiesel from mixed culture algae via a wet lipid extraction procedure.
    Sathish A; Sims RC
    Bioresour Technol; 2012 Aug; 118():643-7. PubMed ID: 22721684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy requirements for wet solvent extraction of lipids from microalgal biomass.
    Martin GJ
    Bioresour Technol; 2016 Apr; 205():40-7. PubMed ID: 26802186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.
    Ansari FA; Gupta SK; Shriwastav A; Guldhe A; Rawat I; Bux F
    Environ Sci Pollut Res Int; 2017 Jun; 24(18):15299-15307. PubMed ID: 28502047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid extraction from the biomass of Trichoderma koningiopsis MX1 produced in a non-stirring culture for potential biodiesel production.
    Mendoza-López MR; Velez-Martínez D; Argumedo-Delira R; Alarcón A; García-Barradas O; Sánchez-Viveros G; Ferrera-Cerrato R
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25627-25633. PubMed ID: 27094268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-plasma-enhanced and phase-separation-assisted extraction of microalgal lipid for biodiesel production.
    Liang D; Alam A; Lu L; Fan R; Xu J; Wu J
    Bioresour Technol; 2022 Jun; 354():127198. PubMed ID: 35460839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of saponifiable lipids from wet microalgal biomass for biodiesel production.
    Jiménez Callejón MJ; Robles Medina A; Macías Sánchez MD; Hita Peña E; Esteban Cerdán L; González Moreno PA; Molina Grima E
    Bioresour Technol; 2014 Oct; 169():198-205. PubMed ID: 25058294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonate assisted lipid extraction and biodiesel production from wet microalgal biomass and recycling waste carbonate for CO
    Zhang R; Wang J; Zhai X; Che J; Xiu Z; Chi Z
    Sci Total Environ; 2021 Jul; 779():146445. PubMed ID: 34030268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel cell disruption technique to enhance lipid extraction from microalgae.
    Steriti A; Rossi R; Concas A; Cao G
    Bioresour Technol; 2014 Jul; 164():70-7. PubMed ID: 24836708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.