BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 30064989)

  • 1. The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance.
    Hekmatshoar Y; Nakhle J; Galloni M; Vignais ML
    Biochem J; 2018 Jul; 475(14):2305-2328. PubMed ID: 30064989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments.
    Patheja P; Sahu K
    Exp Cell Res; 2017 Jun; 355(2):182-193. PubMed ID: 28412243
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Lou E
    Front Oncol; 2020; 10():559548. PubMed ID: 33324545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy.
    Vignais ML; Caicedo A; Brondello JM; Jorgensen C
    Stem Cells Int; 2017; 2017():6917941. PubMed ID: 28659978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance.
    Pasquier J; Guerrouahen BS; Al Thawadi H; Ghiabi P; Maleki M; Abu-Kaoud N; Jacob A; Mirshahi M; Galas L; Rafii S; Le Foll F; Rafii A
    J Transl Med; 2013 Apr; 11():94. PubMed ID: 23574623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking.
    Sáenz-de-Santa-María I; Henderson JM; Pepe A; Zurzolo C
    Curr Protoc; 2023 Nov; 3(11):e939. PubMed ID: 37994667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunneling Nanotubes: A Versatile Target for Cancer Therapy.
    Sahu P; Jena SR; Samanta L
    Curr Cancer Drug Targets; 2018; 18(6):514-521. PubMed ID: 29189162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress and Rho GTPases in the biogenesis of tunnelling nanotubes: implications in disease and therapy.
    Raghavan A; Rao P; Neuzil J; Pountney DL; Nath S
    Cell Mol Life Sci; 2021 Dec; 79(1):36. PubMed ID: 34921322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell communication by tunneling nanotubes: Implications in disease and therapeutic applications.
    Mittal R; Karhu E; Wang JS; Delgado S; Zukerman R; Mittal J; Jhaveri VM
    J Cell Physiol; 2019 Feb; 234(2):1130-1146. PubMed ID: 30206931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies.
    Soundara Rajan T; Gugliandolo A; Bramanti P; Mazzon E
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32423160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery.
    Luchetti F; Carloni S; Nasoni MG; Reiter RJ; Balduini W
    J Pineal Res; 2022 Aug; 73(1):e12800. PubMed ID: 35419879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Tunneling Nanotubes in Wharton's jelly Mesenchymal Stem Cells. An Intercellular Exchange of Components between Neighboring Cells.
    Sanchez V; Villalba N; Fiore L; Luzzani C; Miriuka S; Boveris A; Gelpi RJ; Brusco A; Poderoso JJ
    Stem Cell Rev Rep; 2017 Aug; 13(4):491-498. PubMed ID: 28214945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Transfer in Cancer: A Comprehensive Review.
    Zampieri LX; Silva-Almeida C; Rondeau JD; Sonveaux P
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunneling Nanotubes: The Fuel of Tumor Progression?
    Pinto G; Brou C; Zurzolo C
    Trends Cancer; 2020 Oct; 6(10):874-888. PubMed ID: 32471688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunneling nanotubes: The intercellular conduits contributing to cancer pathogenesis and its therapy.
    Melwani PK; Pandey BN
    Biochim Biophys Acta Rev Cancer; 2023 Nov; 1878(6):189028. PubMed ID: 37993000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial transfer in tunneling nanotubes-a new target for cancer therapy.
    Guan F; Wu X; Zhou J; Lin Y; He Y; Fan C; Zeng Z; Xiong W
    J Exp Clin Cancer Res; 2024 May; 43(1):147. PubMed ID: 38769583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment.
    Polak R; de Rooij B; Pieters R; den Boer ML
    Blood; 2015 Nov; 126(21):2404-14. PubMed ID: 26297738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunneling Nanotubes as a Novel Route of Cell-to-Cell Spread of Herpesviruses.
    Panasiuk M; Rychłowski M; Derewońko N; Bieńkowska-Szewczyk K
    J Virol; 2018 May; 92(10):. PubMed ID: 29491165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells.
    Bukoreshtliev NV; Wang X; Hodneland E; Gurke S; Barroso JF; Gerdes HH
    FEBS Lett; 2009 May; 583(9):1481-8. PubMed ID: 19345217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.