These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 30065086)
41. Chemical shift assignment of the intrinsically disordered N-terminus and the rubredoxin domain in the folded metal bound and unfolded oxidized state of mycobacterial protein kinase G. Wittwer M; Dames SA Biomol NMR Assign; 2016 Oct; 10(2):401-6. PubMed ID: 27632081 [TBL] [Abstract][Full Text] [Related]
42. The actinobacterial WhiB-like (Wbl) family of transcription factors. Bush MJ Mol Microbiol; 2018 Dec; 110(5):663-676. PubMed ID: 30179278 [TBL] [Abstract][Full Text] [Related]
44. Comparison of Type 1 D-3-phosphoglycerate dehydrogenases reveals unique regulation in pathogenic Mycobacteria. Xu XL; Chen S; Salinas ND; Tolia NH; Grant GA Arch Biochem Biophys; 2015 Mar; 570():32-9. PubMed ID: 25698123 [TBL] [Abstract][Full Text] [Related]
45. Regulation of nitrogen metabolism in Mycobacterium tuberculosis: a comparison with mechanisms in Corynebacterium glutamicum and Streptomyces coelicolor. Harper C; Hayward D; Wiid I; van Helden P IUBMB Life; 2008 Oct; 60(10):643-50. PubMed ID: 18493948 [TBL] [Abstract][Full Text] [Related]
46. Mycofactocin Is Associated with Ethanol Metabolism in Mycobacteria. Krishnamoorthy G; Kaiser P; Lozza L; Hahnke K; Mollenkopf HJ; Kaufmann SHE mBio; 2019 May; 10(3):. PubMed ID: 31113891 [TBL] [Abstract][Full Text] [Related]
47. NU-6027 Inhibits Growth of Mycobacterium tuberculosis by Targeting Protein Kinase D and Protein Kinase G. Kidwai S; Bouzeyen R; Chakraborti S; Khare N; Das S; Priya Gosain T; Behura A; Meena CL; Dhiman R; Essafi M; Bajaj A; Saini DK; Srinivasan N; Mahajan D; Singh R Antimicrob Agents Chemother; 2019 Sep; 63(9):. PubMed ID: 31285226 [TBL] [Abstract][Full Text] [Related]
48. Sufficient NADPH supply and pknG deletion improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum. Shi F; Zhang M; Li Y; Fang H Enzyme Microb Technol; 2018 Aug; 115():1-8. PubMed ID: 29859597 [TBL] [Abstract][Full Text] [Related]
49. Biochemical analysis of the NAD+-dependent malate dehydrogenase, a substrate of several serine/threonine protein kinases of Mycobacterium tuberculosis. Wang XM; Soetaert K; Peirs P; Kalai M; Fontaine V; Dehaye JP; Lefèvre P PLoS One; 2015; 10(4):e0123327. PubMed ID: 25860441 [TBL] [Abstract][Full Text] [Related]
50. OdhI dephosphorylation kinetics during different glutamate production processes involving Corynebacterium glutamicum. Boulahya KA; Guedon E; Delaunay S; Schultz C; Boudrant J; Bott M; Goergen JL Appl Microbiol Biotechnol; 2010 Aug; 87(5):1867-74. PubMed ID: 20449744 [TBL] [Abstract][Full Text] [Related]
51. Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases. Bellinzoni M; Wehenkel AM; Durán R; Alzari PM Genes Immun; 2019 May; 20(5):383-393. PubMed ID: 31019252 [TBL] [Abstract][Full Text] [Related]
52. The Mycobacterium tuberculosis serine/threonine kinase PknL phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c. Canova MJ; Veyron-Churlet R; Zanella-Cleon I; Cohen-Gonsaud M; Cozzone AJ; Becchi M; Kremer L; Molle V Proteomics; 2008 Feb; 8(3):521-33. PubMed ID: 18175374 [TBL] [Abstract][Full Text] [Related]
54. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Molle V; Kremer L Mol Microbiol; 2010 Mar; 75(5):1064-77. PubMed ID: 20487298 [TBL] [Abstract][Full Text] [Related]
55. Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria. Selengut JD; Haft DH J Bacteriol; 2010 Nov; 192(21):5788-98. PubMed ID: 20675471 [TBL] [Abstract][Full Text] [Related]
56. Aminoglycoside 2'-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2')-Ic gene from Mycobacterium tuberculosis and the aac(2')-Id gene from Mycobacterium smegmatis. Aínsa JA; Pérez E; Pelicic V; Berthet FX; Gicquel B; Martín C Mol Microbiol; 1997 Apr; 24(2):431-41. PubMed ID: 9159528 [TBL] [Abstract][Full Text] [Related]
57. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Mori M; Sammartino JC; Costantino L; Gelain A; Meneghetti F; Villa S; Chiarelli LR Curr Top Med Chem; 2019; 19(9):646-661. PubMed ID: 30827246 [TBL] [Abstract][Full Text] [Related]
58. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Kang CM; Abbott DW; Park ST; Dascher CC; Cantley LC; Husson RN Genes Dev; 2005 Jul; 19(14):1692-704. PubMed ID: 15985609 [TBL] [Abstract][Full Text] [Related]
59. mRNA Degradation Rates Are Coupled to Metabolic Status in Mycobacterium smegmatis. Vargas-Blanco DA; Zhou Y; Zamalloa LG; Antonelli T; Shell SS mBio; 2019 Jul; 10(4):. PubMed ID: 31266866 [TBL] [Abstract][Full Text] [Related]