BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30065115)

  • 1. Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids.
    Glantz ST; Berlew EE; Jaber Z; Schuster BS; Gardner KH; Chow BY
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):E7720-E7727. PubMed ID: 30065115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation.
    Berlew EE; Kuznetsov IA; Yamada K; Bugaj LJ; Chow BY
    Photochem Photobiol Sci; 2020 Mar; 19(3):353-361. PubMed ID: 32048687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a Vivid Homolog in Botrytis cinerea.
    Foley BJ; Stutts H; Schmitt SL; Lokhandwala J; Nagar A; Zoltowski BD
    Photochem Photobiol; 2018 Sep; 94(5):985-993. PubMed ID: 29682744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and topological diversity of LOV domain photoreceptors.
    Glantz ST; Carpenter EJ; Melkonian M; Gardner KH; Boyden ES; Wong GK; Chow BY
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):E1442-51. PubMed ID: 26929367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast.
    Romero A; Rojas V; Delgado V; Salinas F; Larrondo LF
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Oxygen-Voltage (LOV)-sensing Domains: Activation Mechanism and Optogenetic Stimulation.
    Flores-Ibarra A; Maia RNA; Olasz B; Church JR; Gotthard G; Schapiro I; Heberle J; Nogly P
    J Mol Biol; 2024 Mar; 436(5):168356. PubMed ID: 37944792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical Reactions of the LOV and LOV-Linker Domains of the Blue Light Sensor Protein YtvA.
    Choi S; Nakasone Y; Hellingwerf KJ; Terazima M
    Biochemistry; 2016 Jun; 55(22):3107-15. PubMed ID: 27203230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence.
    Heintz U; Schlichting I
    Elife; 2016 Jan; 5():e11860. PubMed ID: 26754770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residue alterations within a conserved hydrophobic pocket influence light, oxygen, voltage photoreceptor dark recovery.
    Hemmer S; Schulte M; Knieps-Grünhagen E; Granzin J; Willbold D; Jaeger KE; Batra-Safferling R; Panwalkar V; Krauss U
    Photochem Photobiol Sci; 2023 Apr; 22(4):713-727. PubMed ID: 36480084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Basis of the Fast Dark Recovery of the Short LOV Protein DsLOV from Dinoroseobacter shibae.
    Fettweiss T; Röllen K; Granzin J; Reiners O; Endres S; Drepper T; Willbold D; Jaeger KE; Batra-Safferling R; Krauss U
    Biochemistry; 2018 Aug; 57(32):4833-4847. PubMed ID: 29989797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and phylogeny of light-oxygen-voltage-blue-light-signaling proteins in the three kingdoms of life.
    Krauss U; Minh BQ; Losi A; Gärtner W; Eggert T; von Haeseler A; Jaeger KE
    J Bacteriol; 2009 Dec; 191(23):7234-42. PubMed ID: 19783626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of dark recovery kinetic parameters and structural features in the pseudomonadaceae "short" light, oxygen, voltage (LOV) protein family: implications for the design of LOV-based optogenetic tools.
    Rani R; Jentzsch K; Lecher J; Hartmann R; Willbold D; Jaeger KE; Krauss U
    Biochemistry; 2013 Jul; 52(26):4460-73. PubMed ID: 23746326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically inducible membrane recruitment and signaling systems.
    Hannanta-Anan P; Glantz ST; Chow BY
    Curr Opin Struct Biol; 2019 Aug; 57():84-92. PubMed ID: 30884362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Native Threonine Coordinates Ordered Water to Tune Light-Oxygen-Voltage (LOV) Domain Photocycle Kinetics and Osmotic Stress Signaling in Trichoderma reesei ENVOY.
    Lokhandwala J; Silverman Y de la Vega RI; Hopkins HC; Britton CW; Rodriguez-Iglesias A; Bogomolni R; Schmoll M; Zoltowski BD
    J Biol Chem; 2016 Jul; 291(28):14839-50. PubMed ID: 27226624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoactivation of LOV domains with chemiluminescence.
    Ji Y; Heidari A; Nzigou Mombo B; Wegner SV
    Chem Sci; 2024 Jan; 15(3):1027-1038. PubMed ID: 38239695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical element of the light-induced quaternary structural changes in YtvA-LOV.
    Lee R; Gam J; Moon J; Lee SG; Suh YG; Lee BJ; Lee J
    Protein Sci; 2015 Dec; 24(12):1997-2007. PubMed ID: 26402155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling.
    Pudasaini A; El-Arab KK; Zoltowski BD
    Front Mol Biosci; 2015; 2():18. PubMed ID: 25988185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an unusual LOV domain protein in the alpha-proteobacterium Rhodobacter sphaeroides.
    Hendrischk AK; Moldt J; Frühwirth SW; Klug G
    Photochem Photobiol; 2009; 85(5):1254-9. PubMed ID: 19508644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosterically regulated unfolding of the A'α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain.
    Herman E; Kottke T
    Biochemistry; 2015 Feb; 54(7):1484-92. PubMed ID: 25621532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.