These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30065208)

  • 1. Visual Localizer: Outdoor Localization Based on ConvNet Descriptor and Global Optimization for Visually Impaired Pedestrians.
    Lin S; Cheng R; Wang K; Yang K
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30065208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual Localization across Seasons Using Sequence Matching Based on Multi-Feature Combination.
    Qiao Y
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29068358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Panoramic Localizer Based on Coarse-to-Fine Descriptors for Navigation Assistance.
    Fang Y; Yang K; Cheng R; Sun L; Wang K
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32727159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ConvNet and LSH-Based Visual Localization Using Localized Sequence Matching.
    Qiao Y; Cappelle C; Ruichek Y; Yang T
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31142006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Navigation and Augmented Reality System for Visually Impaired People.
    Lo Valvo A; Croce D; Garlisi D; Giuliano F; Giarré L; Tinnirello I
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contextual Patch-NetVLAD: Context-Aware Patch Feature Descriptor and Patch Matching Mechanism for Visual Place Recognition.
    Sun W; Chen W; Huang R; Tian J
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty-Aware Visual Perception System for Outdoor Navigation of the Visually Challenged.
    Dimas G; Diamantis DE; Kalozoumis P; Iakovidis DK
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32331322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People.
    Lu CL; Liu ZY; Huang JT; Huang CI; Wang BH; Chen Y; Wu NH; Wang HC; Giarré L; Kuo PY
    Front Robot AI; 2021; 8():654132. PubMed ID: 34239900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survey and analysis of the current status of research in the field of outdoor navigation for the blind.
    Lian Y; Liu DE; Ji WZ
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1657-1675. PubMed ID: 37402242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outdoor Localization Using BLE RSSI and Accessible Pedestrian Signals for the Visually Impaired at Intersections.
    Shin K; McConville R; Metatla O; Chang M; Han C; Lee J; Roudaut A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-obstacle aware smart navigation system for visually impaired people in fog connected IoT-cloud environment.
    Mueen A; Awedh M; Zafar B
    Health Informatics J; 2022; 28(3):14604582221112609. PubMed ID: 35801559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface.
    Tachiquin R; Velázquez R; Del-Valle-Soto C; Gutiérrez CA; Carrasco M; De Fazio R; Trujillo-León A; Visconti P; Vidal-Verdú F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.
    Zhong J; Lei T; Yao G
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple Smartphone-Based Guiding System for Visually Impaired People.
    Lin BS; Lee CC; Chiang PY
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28608811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System.
    Chen Z; Liu X; Kojima M; Huang Q; Arai T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electronic travel guide for visually impaired - vehicle board recognition system through computer vision techniques.
    Noorjahan M; Punitha A
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):238-241. PubMed ID: 30856030
    [No Abstract]   [Full Text] [Related]  

  • 17. Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation.
    Yang K; Wang K; Bergasa LM; Romera E; Hu W; Sun D; Sun J; Cheng R; Chen T; López E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Visible and Thermal Image Fusion for Enhanced Pedestrian Visibility.
    Shopovska I; Jovanov L; Philips W
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31466378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Reduction of Computational Complexity of Deep Convolutional Neural Networks.
    Maji P; Mullins R
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.