These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30065509)

  • 1. High-Intensity Focused Ultrasound Thermal Lesion Detection Using Entropy Imaging of Ultrasound Radio Frequency Signal Time Series.
    Monfared MM; Behnam H; Rangraz P; Tavakkoli J
    J Med Ultrasound; 2018; 26(1):24-30. PubMed ID: 30065509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radio Frequency Ultrasound Time Series Signal Analysis to Evaluate High-intensity Focused Ultrasound Lesion Formation Status in Tissue.
    Mobasheri S; Behnam H; Rangraz P; Tavakkoli J
    J Med Signals Sens; 2016; 6(2):91-8. PubMed ID: 27186536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating dynamic changes of tissue attenuation coefficient during high-intensity focused ultrasound treatment.
    Rahimian S; Tavakkoli J
    J Ther Ultrasound; 2013; 1():14. PubMed ID: 25516802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of gaps between high-intensity focused ultrasound (HIFU)-induced lesions using transient axial shear strain elastograms.
    Liu C; Zhou Y
    Med Phys; 2018 Jul; ():. PubMed ID: 29963699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time monitoring of high-intensity focused ultrasound thermal therapy using the manifold learning method.
    Rangraz P; Behnam H; Sobhebidari P; Tavakkoli J
    Ultrasound Med Biol; 2014 Dec; 40(12):2841-50. PubMed ID: 25438863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced lesion-to-bubble ratio on ultrasonic Nakagami imaging for monitoring of high-intensity focused ultrasound.
    Zhang S; Li C; Zhou F; Wan M; Wang S
    J Ultrasound Med; 2014 Jun; 33(6):959-70. PubMed ID: 24866603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An acoustic backscatter-based method for localization of lesions induced by high-intensity focused ultrasound.
    Zheng X; Vaezy S
    Ultrasound Med Biol; 2010 Apr; 36(4):610-22. PubMed ID: 20211516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue.
    Rangraz P; Behnam H; Tavakkoli J
    Proc Inst Mech Eng H; 2014 Jan; 228(1):19-26. PubMed ID: 24264647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decorrelated compounding of synthetic aperture ultrasound imaging to detect low contrast thermal lesions induced by focused ultrasound.
    Nguyen M; Zhao N; Xu Y; Tavakkoli JJ
    Ultrasonics; 2023 Sep; 134():107098. PubMed ID: 37437400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic Nakagami Imaging of High-intensity Focused Ultrasound-induced Thermal Lesions in Porcine Livers: Ex Vivo Study.
    Huang SM; Liu HL; Li DW; Li ML
    Ultrason Imaging; 2018 Sep; 40(5):310-324. PubMed ID: 29857786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study.
    Hou GY; Marquet F; Wang S; Konofagou EE
    Phys Med Biol; 2014 Mar; 59(5):1121-45. PubMed ID: 24556974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Intensity Focused Ultrasound Lesion Detection Using Adaptive Compressive Sensing Based on Empirical Mode Decomposition.
    Ghasemifard H; Behnam H; Tavakkoli J
    J Med Signals Sens; 2019; 9(1):24-32. PubMed ID: 30967987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Feed-forward Neural Network Algorithm to Detect Thermal Lesions Induced by High Intensity Focused Ultrasound in Tissue.
    Rangraz P; Behnam H; Shakhssalim N; Tavakkoli J
    J Med Signals Sens; 2012 Oct; 2(4):192-202. PubMed ID: 23724369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nakagami-m parametric imaging for characterization of thermal coagulation and cavitation erosion induced by HIFU.
    Han M; Wang N; Guo S; Chang N; Lu S; Wan M
    Ultrason Sonochem; 2018 Jul; 45():78-85. PubMed ID: 29705328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermometry using entropy imaging of ultrasound radio frequency signal time series.
    Behnia A; Behnam H; Shaswary E; Tavakkoli J
    Proc Inst Mech Eng H; 2022 Oct; 236(10):1502-1512. PubMed ID: 36112938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple ultrasonic parametric imaging for the detection and monitoring of high-intensity focused ultrasound ablation.
    Yang G; Liu J; Yang B; Guo J; Wu C; Zhang B; Zhang S
    Ultrasonics; 2024 Apr; 139():107274. PubMed ID: 38428161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-Domain Robust PCA for Real-Time Monitoring of HIFU Treatment.
    Yang K; Li Q; Xu J; Tang MX; Wang Z; Tsui PH; Zhou X
    IEEE Trans Med Imaging; 2024 Apr; PP():. PubMed ID: 38578852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive Monitoring of Tissue Temperature Changes Induced by Focused Ultrasound Exposure using Sparse Expression of Ultrasonic Radio Frequency Echo Signals.
    Malekzadeh KB; Behnam H; Tavakkoli JJ
    J Med Signals Sens; 2024; 14():8. PubMed ID: 38993206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A localization method of lesions induced by High Intensity Focused Ultrasound based on acoustic backscatter change.
    Zheng X; Vaezy S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3673-6. PubMed ID: 19163507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment.
    Zhang S; Wan M; Zhong H; Xu C; Liao Z; Liu H; Wang S
    Ultrasound Med Biol; 2009 Nov; 35(11):1828-44. PubMed ID: 19716225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.