These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 30065711)
1. Construction and Characterization of a New Recombinant Vector to Remove Sulfate Repression of Khosravinia S; Mahdavi MA; Gheshlaghi R; Dehghani H; Rasekh B Front Microbiol; 2018; 9():1578. PubMed ID: 30065711 [TBL] [Abstract][Full Text] [Related]
2. Advancing Desulfurization in the Model Biocatalyst Martzoukou O; Amillis S; Glekas PD; Breyanni D; Avgeris M; Scorilas A; Kekos D; Pachnos M; Mavridis G; Mamma D; Hatzinikolaou DG Appl Environ Microbiol; 2023 Feb; 89(2):e0197022. PubMed ID: 36688659 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Truncated dsz Operon Responsible for Dibenzothiophene Biodesulfurization in Rhodococcus sp. FUM94. Khosravinia S; Mahdavi MA; Gheshlaghi R; Dehghani H Appl Biochem Biotechnol; 2018 Mar; 184(3):885-896. PubMed ID: 28918586 [TBL] [Abstract][Full Text] [Related]
4. Recombinant Rhodococcus sp. strain T09 can desulfurize DBT in the presence of inorganic sulfate. Matsui T; Noda K; Tanaka Y; Maruhashi K; Kurane R Curr Microbiol; 2002 Oct; 45(4):240-4. PubMed ID: 12192519 [TBL] [Abstract][Full Text] [Related]
5. Fructophilic behaviour of Gordonia alkanivorans strain 1B during dibenzothiophene desulfurization process. Alves L; Paixão SM N Biotechnol; 2014 Jan; 31(1):73-9. PubMed ID: 24012483 [TBL] [Abstract][Full Text] [Related]
6. Dimethyl sulfoxide (DMSO) as the sulfur source for the production of desulfurizing resting cells of Gordonia alkanivorans RIPI90A. Mohebali G; Ball AS; Kaytash A; Rasekh B Microbiology (Reading); 2008 Mar; 154(Pt 3):878-885. PubMed ID: 18310033 [TBL] [Abstract][Full Text] [Related]
7. De-repression and comparison of oil-water separation activity of the dibenzothiophene desulfurizing bacterium, Mycobacterium sp. G3. Takada M; Nomura N; Okada H; Nakajima-Kambe T; Nakahara T; Uchiyama H Biotechnol Lett; 2005 Jun; 27(12):871-4. PubMed ID: 16086250 [TBL] [Abstract][Full Text] [Related]
8. Interplay between Sulfur Assimilation and Biodesulfurization Activity in Rhodococcus qingshengii IGTS8: Insights into a Regulatory Role of the Reverse Transsulfuration Pathway. Martzoukou O; Glekas PD; Avgeris M; Mamma D; Scorilas A; Kekos D; Amillis S; Hatzinikolaou DG mBio; 2022 Aug; 13(4):e0075422. PubMed ID: 35856606 [TBL] [Abstract][Full Text] [Related]
9. Isolation of a recombinant desulfurizing 4,6-diproply dibenzothiophene in n-tetradecane. Noda K; Watanabe K; Maruhashi K J Biosci Bioeng; 2003; 95(4):354-60. PubMed ID: 16233419 [TBL] [Abstract][Full Text] [Related]
10. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria. Mohamed Mel-S; Al-Yacoub ZH; Vedakumar JV Front Microbiol; 2015; 6():112. PubMed ID: 25762990 [TBL] [Abstract][Full Text] [Related]
11. Medium composition overturns the widely accepted sulfate-dependent repression of desulfurization phenotype in Rhodococcus qingshengii IGTS8. Martzoukou O; Mamma D; Hatzinikolaou DG Biotechnol Bioeng; 2023 Oct; 120(10):3092-3098. PubMed ID: 37218382 [TBL] [Abstract][Full Text] [Related]
12. Microbial desulfurization of alkylated dibenzothiophene and alkylated benzothiophene by recombinant Rhodococcus sp. strain T09. Matsui T; Hirasawa K; Konishi J; Tanaka Y; Maruhashi K; Kurane R Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):196-200. PubMed ID: 11499930 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures. Kawaguchi H; Kobayashi H; Sato K J Biosci Bioeng; 2012 Mar; 113(3):360-6. PubMed ID: 22099375 [TBL] [Abstract][Full Text] [Related]
14. A kinetic model to optimize and direct the dose ratio of Dsz enzymes in the 4S desulfurization pathway in vitro and in vivo. Li L; Ye L; Guo Z; Zhang W; Liao X; Lin Y; Liang S Biotechnol Lett; 2019 Nov; 41(11):1333-1341. PubMed ID: 31522352 [TBL] [Abstract][Full Text] [Related]
15. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria. Martínez I; El-Said Mohamed M; Santos VE; García JL; García-Ochoa F; Díaz E J Biotechnol; 2017 Nov; 262():47-55. PubMed ID: 28947364 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the biodesulphurization capacity of Rhodococcus sp. FUM94 in a biphasic system through optimization of operational factors. Hokmabadi M; Khosravinia S; Mahdavi MA; Gheshlaghi R J Appl Microbiol; 2022 May; 132(5):3461-3475. PubMed ID: 34995396 [TBL] [Abstract][Full Text] [Related]
17. Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. Ma CQ; Feng JH; Zeng YY; Cai XF; Sun BP; Zhang ZB; Blankespoor HD; Xu P Chemosphere; 2006 Sep; 65(1):165-9. PubMed ID: 16624377 [TBL] [Abstract][Full Text] [Related]
18. Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4. Nassar HN; Abu Amr SS; El-Gendy NS Environ Sci Pollut Res Int; 2021 Feb; 28(7):8102-8116. PubMed ID: 33048293 [TBL] [Abstract][Full Text] [Related]
19. Biodesulfurization of Thiophenic Compounds by a 2-Hydroxybiphenyl-Resistant Gordonia sp. HS126-4N Carrying dszABC Genes. Akhtar N; Akhtar K; Ghauri MA Curr Microbiol; 2018 May; 75(5):597-603. PubMed ID: 29264784 [TBL] [Abstract][Full Text] [Related]
20. Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Li GQ; Li SS; Zhang ML; Wang J; Zhu L; Liang FL; Liu RL; Ma T Appl Environ Microbiol; 2008 Feb; 74(4):971-6. PubMed ID: 18165370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]