BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 30065734)

  • 1. CRISPR for Crop Improvement: An Update Review.
    Jaganathan D; Ramasamy K; Sellamuthu G; Jayabalan S; Venkataraman G
    Front Plant Sci; 2018; 9():985. PubMed ID: 30065734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
    Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas system: A revolutionary tool for crop improvement.
    Mishra A; Pandey VP
    Biotechnol J; 2024 Feb; 19(2):e2300298. PubMed ID: 38403466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants.
    Singh J; Sharma D; Brar GS; Sandhu KS; Wani SH; Kashyap R; Kour A; Singh S
    Mol Biol Rep; 2022 Dec; 49(12):11443-11467. PubMed ID: 36002653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises.
    Rasheed A; Gill RA; Hassan MU; Mahmood A; Qari S; Zaman QU; Ilyas M; Aamer M; Batool M; Li H; Wu Z
    Curr Issues Mol Biol; 2021 Nov; 43(3):1950-1976. PubMed ID: 34889892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges.
    Haque E; Taniguchi H; Hassan MM; Bhowmik P; Karim MR; Śmiech M; Zhao K; Rahman M; Islam T
    Front Plant Sci; 2018; 9():617. PubMed ID: 29868073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A; Gaudet D; Laurie J
    Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
    Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants.
    Yadav RK; Tripathi MK; Tiwari S; Tripathi N; Asati R; Chauhan S; Tiwari PN; Payasi DK
    Life (Basel); 2023 Jun; 13(7):. PubMed ID: 37511831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Developments in CRISPR/Cas9 Genome-Editing Technology Related to Plant Disease Resistance and Abiotic Stress Tolerance.
    Erdoğan İ; Cevher-Keskin B; Bilir Ö; Hong Y; Tör M
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals.
    Wani AK; Akhtar N; Singh R; Prakash A; Raza SHA; Cavalu S; Chopra C; Madkour M; Elolimy A; Hashem NM
    Vet Res Commun; 2023 Jan; 47(1):1-16. PubMed ID: 35781172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex Genome-Editing Technologies for Revolutionizing Plant Biology and Crop Improvement.
    Abdelrahman M; Wei Z; Rohila JS; Zhao K
    Front Plant Sci; 2021; 12():721203. PubMed ID: 34691102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins of Programmable Nucleases for Genome Engineering.
    Chandrasegaran S; Carroll D
    J Mol Biol; 2016 Feb; 428(5 Pt B):963-89. PubMed ID: 26506267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis Approaches and Their Role in Crop Improvement.
    Chaudhary J; Deshmukh R; Sonah H
    Plants (Basel); 2019 Oct; 8(11):. PubMed ID: 31683624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement.
    Afzal S; Sirohi P; Singh NK
    Biotechnol Lett; 2020 Sep; 42(9):1611-1632. PubMed ID: 32642978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of genome editing technologies to the study and treatment of hematological disease.
    Pellagatti A; Dolatshad H; Yip BH; Valletta S; Boultwood J
    Adv Biol Regul; 2016 Jan; 60():122-134. PubMed ID: 26433620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system.
    Dheer P; Rautela I; Sharma V; Dhiman M; Sharma A; Sharma N; Sharma MD
    Gene; 2020 Aug; 753():144795. PubMed ID: 32450202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.