These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30065742)

  • 1. Protein Kinases and Phosphatases of the Plastid and Their Potential Role in Starch Metabolism.
    White-Gloria C; Johnson JJ; Marritt K; Kataya A; Vahab A; Moorhead GB
    Front Plant Sci; 2018; 9():1032. PubMed ID: 30065742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38.
    Pesaresi P; Pribil M; Wunder T; Leister D
    Biochim Biophys Acta; 2011 Aug; 1807(8):887-96. PubMed ID: 20728426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Kinase STATE TRANSITION 8 Phosphorylates Light Harvesting Complex II and Contributes to Light Acclimation in
    Longoni P; Samol I; Goldschmidt-Clermont M
    Front Plant Sci; 2019; 10():1156. PubMed ID: 31608094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light.
    Mekala NR; Suorsa M; Rantala M; Aro EM; Tikkanen M
    Plant Physiol; 2015 Jun; 168(2):721-34. PubMed ID: 25902812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox regulation of thylakoid protein kinases and photosynthetic gene expression.
    Rochaix JD
    Antioxid Redox Signal; 2013 Jun; 18(16):2184-201. PubMed ID: 23339452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of STN7/STN8 kinase targets reveals connections between electron transport, metabolism and gene expression.
    Schönberg A; Rödiger A; Mehwald W; Galonska J; Christ G; Helm S; Thieme D; Majovsky P; Hoehenwarter W; Baginsky S
    Plant J; 2017 Jun; 90(6):1176-1186. PubMed ID: 28295753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The STN8 kinase-PBCP phosphatase system is responsible for high-light-induced reversible phosphorylation of the PSII inner antenna subunit CP29 in rice.
    Betterle N; Poudyal RS; Rosa A; Wu G; Bassi R; Lee CH
    Plant J; 2017 Feb; 89(4):681-691. PubMed ID: 27813190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The High Light Response in Arabidopsis Requires the Calcium Sensor Protein CAS, a Target of STN7- and STN8-Mediated Phosphorylation.
    Cutolo E; Parvin N; Ruge H; Pirayesh N; Roustan V; Weckwerth W; Teige M; Grieco M; Larosa V; Vothknecht UC
    Front Plant Sci; 2019; 10():974. PubMed ID: 31417591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Mechanism Underlying the Specific Recognition between the Arabidopsis State-Transition Phosphatase TAP38/PPH1 and Phosphorylated Light-Harvesting Complex Protein Lhcb1.
    Wei X; Guo J; Li M; Liu Z
    Plant Cell; 2015 Apr; 27(4):1113-27. PubMed ID: 25888588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation-reduction signalling components in regulatory pathways of state transitions and photosystem stoichiometry adjustment in chloroplasts.
    Puthiyaveetil S; Ibrahim IM; Allen JF
    Plant Cell Environ; 2012 Feb; 35(2):347-59. PubMed ID: 21554328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics of Arabidopsis chloroplasts reveals involvement of the STN7 kinase in phosphorylation of nucleoid protein pTAC16.
    Ingelsson B; Vener AV
    FEBS Lett; 2012 May; 586(9):1265-71. PubMed ID: 22616989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Survey of Chloroplast Protein Kinases and Phosphatases in Arabidopsis thaliana.
    Schliebner I; Pribil M; Zühlke J; Dietzmann A; Leister D
    Curr Genomics; 2008 May; 9(3):184-90. PubMed ID: 19440515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serine and threonine residues of plant STN7 kinase are differentially phosphorylated upon changing light conditions and specifically influence the activity and stability of the kinase.
    Trotta A; Suorsa M; Rantala M; Lundin B; Aro EM
    Plant J; 2016 Sep; 87(5):484-94. PubMed ID: 27214592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The flip side of phospho-signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs.
    Bhaskara GB; Wong MM; Verslues PE
    Plant Cell Environ; 2019 Oct; 42(10):2913-2930. PubMed ID: 31314921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downregulation of TAP38/PPH1 enables LHCII hyperphosphorylation in Arabidopsis mutant lacking LHCII docking site in PSI.
    Rantala M; Lehtimäki N; Aro EM; Suorsa M
    FEBS Lett; 2016 Mar; 590(6):787-94. PubMed ID: 26926011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural mechanisms of plant glucan phosphatases in starch metabolism.
    Meekins DA; Vander Kooi CW; Gentry MS
    FEBS J; 2016 Jul; 283(13):2427-47. PubMed ID: 26934589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of kinases, phosphatases, and phosphorylation sites in human and porcine spermatozoa.
    Lackey BR; Gray SL
    Syst Biol Reprod Med; 2015; 61(6):345-52. PubMed ID: 26467841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development.
    Treuner-Lange A; Ward MJ; Zusman DR
    Mol Microbiol; 2001 Apr; 40(1):126-40. PubMed ID: 11298281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate analysis of Arabidopsis PP2C-type protein phosphatases.
    Umbrasaite J; Schweighofer A; Meskiene I
    Methods Mol Biol; 2011; 779():149-61. PubMed ID: 21837565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of four plastid-localized protein kinases.
    Richter AS; Gartmann H; Fechler M; Rödiger A; Baginsky S; Grimm B
    FEBS Lett; 2016 Jun; 590(12):1749-56. PubMed ID: 27214872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.