These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30065845)

  • 21. GC-MS-Based Metabolomics for the Smut Fungus
    Phan ANT; Blank LM
    Front Mol Biosci; 2020; 7():211. PubMed ID: 32974387
    [No Abstract]   [Full Text] [Related]  

  • 22. High level production of itaconic acid at low pH by Ustilago maydis with fed-batch fermentation.
    Demir HT; Bezirci E; Becker J; Tehrani HH; Nikerel E; Wierck N; Türker M
    Bioprocess Biosyst Eng; 2021 Apr; 44(4):749-758. PubMed ID: 33392747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain.
    Huang X; Lu X; Li Y; Li X; Li JJ
    Microb Cell Fact; 2014 Aug; 13():119. PubMed ID: 25162789
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    McTaggart AR; Shivas RG; Boekhout T; Oberwinkler F; Vánky K; Pennycook SR; Begerow D
    IMA Fungus; 2016 Dec; 7(2):309-315. PubMed ID: 27990337
    [No Abstract]   [Full Text] [Related]  

  • 25. Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus.
    Huang X; Chen M; Lu X; Li Y; Li X; Li JJ
    Microb Cell Fact; 2014 Aug; 13():108. PubMed ID: 25162619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Unconventional Melanin Biosynthesis Pathway in Ustilago maydis.
    Reyes-Fernández EZ; Shi YM; Grün P; Bode HB; Bölker M
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33218994
    [No Abstract]   [Full Text] [Related]  

  • 27. Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression.
    Donaldson ME; Ostrowski LA; Goulet KM; Saville BJ
    BMC Genomics; 2017 May; 18(1):340. PubMed ID: 28464849
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Liebal UW; Ullmann L; Lieven C; Kohl P; Wibberg D; Zambanini T; Blank LM
    J Fungi (Basel); 2022 May; 8(5):. PubMed ID: 35628779
    [No Abstract]   [Full Text] [Related]  

  • 29. Itaconic acid production in microorganisms.
    Zhao M; Lu X; Zong H; Li J; Zhuge B
    Biotechnol Lett; 2018 Mar; 40(3):455-464. PubMed ID: 29299715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brewers' spent grain as carbon source for itaconate production with engineered Ustilago maydis.
    Weiermüller J; Akermann A; Laudensack W; Chodorski J; Blank LM; Ulber R
    Bioresour Technol; 2021 Sep; 336():125262. PubMed ID: 34044241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bio-Based Production of Dimethyl Itaconate From Rice Wine Waste-Derived Itaconic Acid.
    Joo YC; You SK; Shin SK; Ko YJ; Jung KH; Sim SA; Han SO
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28846199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Renewable carbon sources to biochemicals and -fuels: contributions of the smut fungi Ustilaginaceae.
    Becker J; Liebal UW; Phan AN; Ullmann L; Blank LM
    Curr Opin Biotechnol; 2023 Feb; 79():102849. PubMed ID: 36446145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of itaconate production in Escherichia coli.
    Vuoristo KS; Mars AE; Sangra JV; Springer J; Eggink G; Sanders JP; Weusthuis RA
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):221-8. PubMed ID: 25277412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain.
    García-Pedrajas MD; Baeza-Montañez L; Gold SE
    Mol Plant Microbe Interact; 2010 Feb; 23(2):211-22. PubMed ID: 20064064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High oxygen tension increases itaconic acid accumulation, glucose consumption, and the expression and activity of alternative oxidase in Aspergillus terreus.
    Molnár ÁP; Németh Z; Kolláth IS; Fekete E; Flipphi M; Ág N; Soós Á; Kovács B; Sándor E; Kubicek CP; Karaffa L
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8799-8808. PubMed ID: 30141084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The biotechnological use and potential of plant pathogenic smut fungi.
    Feldbrügge M; Kellner R; Schipper K
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3253-65. PubMed ID: 23455565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.
    Ali S; Laurie JD; Linning R; Cervantes-Chávez JA; Gaudet D; Bakkeren G
    PLoS Pathog; 2014 Jul; 10(7):e1004223. PubMed ID: 24992661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers.
    Teleky BE; Vodnar DC
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31212656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison.
    Ho EC; Cahill MJ; Saville BJ
    BMC Genomics; 2007 Sep; 8():334. PubMed ID: 17892571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of an endo-1,4-beta-xylanase of Ustilago maydis.
    Geiser E; Wierckx N; Zimmermann M; Blank LM
    BMC Biotechnol; 2013 Jul; 13():59. PubMed ID: 23889751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.