BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 30066196)

  • 1. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs.
    Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z
    Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification.
    Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS
    Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sensing system constructed by combining a structure-switchable molecular beacon with nicking-enhanced rolling circle amplification for highly sensitive miRNA detection.
    Sun S; Wang W; Hu X; Zheng C; Xiang Q; Yang Q; Zhang J; Shen ZF; Wu ZS
    Analyst; 2022 May; 147(9):1937-1943. PubMed ID: 35389390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.
    Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM
    Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs.
    Xu H; Zhang S; Ouyang C; Wang Z; Wu D; Liu Y; Jiang Y; Wu ZS
    Talanta; 2019 Jan; 192():175-181. PubMed ID: 30348375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dual discrimination mode for improved specificity towards let-7a detection via a single-base mutated padlock probe-based exponential rolling circle amplification.
    Li R; Wang Y; Wang P; Lu J
    Luminescence; 2017 Dec; 32(8):1574-1581. PubMed ID: 28685952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification.
    Liu H; Li L; Duan L; Wang X; Xie Y; Tong L; Wang Q; Tang B
    Anal Chem; 2013 Aug; 85(16):7941-7. PubMed ID: 23855808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Sensitive MicroRNA Detection by Coupling Nicking-Enhanced Rolling Circle Amplification with MoS
    Ge J; Hu Y; Deng R; Li Z; Zhang K; Shi M; Yang D; Cai R; Tan W
    Anal Chem; 2020 Oct; 92(19):13588-13594. PubMed ID: 32894943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasingly branched rolling circle amplification for the cancer gene detection.
    Li H; Xu J; Wang Z; Wu ZS; Jia L
    Biosens Bioelectron; 2016 Dec; 86():1067-1073. PubMed ID: 27569300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification.
    Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y
    Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific and simultaneous detection of micro RNA 21 and let-7a by rolling circle amplification combined with lateral flow strip.
    Yao M; Lv X; Deng Y; Rasheed M
    Anal Chim Acta; 2019 May; 1055():115-125. PubMed ID: 30782362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification.
    Wu ZS; Zhang S; Zhou H; Shen GL; Yu R
    Anal Chem; 2010 Mar; 82(6):2221-7. PubMed ID: 20151715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs.
    Zhao Y; Wang Y; Liu S; Wang C; Liang J; Li S; Qu X; Zhang R; Yu J; Huang J
    Analyst; 2019 Aug; 144(17):5245-5253. PubMed ID: 31361292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs.
    Tian W; Li P; He W; Liu C; Li Z
    Biosens Bioelectron; 2019 Mar; 128():17-22. PubMed ID: 30616213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid.
    Xue Q; Lv Y; Cui H; Gu X; Zhang S; Liu J
    Anal Chim Acta; 2015 Jan; 856():103-9. PubMed ID: 25542364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering an endonuclease-assisted rolling circle amplification synergistically catalyzing hairpin assembly mediated fluorescence platform for miR-21 detection.
    Liang Z; Huang X; Tong Y; Lin X; Chen Z
    Talanta; 2022 Sep; 247():123568. PubMed ID: 35609481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Selective and Sensitive Electrochemiluminescence Biosensor for p53 DNA Sequence Based on Nicking Endonuclease Assisted Target Recycling and Hyperbranched Rolling Circle Amplification.
    Yang L; Tao Y; Yue G; Li R; Qiu B; Guo L; Lin Z; Yang HH
    Anal Chem; 2016 May; 88(10):5097-103. PubMed ID: 27086663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide-based fluorometric determination of microRNA-141 using rolling circle amplification and exonuclease III-aided recycling amplification.
    Li M; Xu X; Cai Q; Luo X; Zhou Z; Xu G; Xie Y
    Mikrochim Acta; 2019 Jul; 186(8):531. PubMed ID: 31302786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated nicking enzyme-powered numerous-legged DNA walker prepared by rolling circle amplification for fluorescence detection of microRNA.
    Wang L; Zeng H; Yang X; Chen C; Ou S
    Mikrochim Acta; 2021 May; 188(6):214. PubMed ID: 34052953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive Fluorescence Detection and Imaging of MicroRNA in Cells Based on a Hyperbranched RCA-Assisted Multiposition SDR Signal Amplification Strategy.
    Yang Z; Guo Y; Zhou J; Liu F; Liang W; Chai Y; Li Z; Yuan R
    Anal Chem; 2022 Nov; 94(46):16237-16245. PubMed ID: 36346897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.