BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30066356)

  • 41. A simple Bayesian decision-theoretic design for dose-finding trials.
    Fan SK; Lu Y; Wang YG
    Stat Med; 2012 Dec; 31(28):3719-30. PubMed ID: 22763943
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bayesian dose-finding in phase I/II clinical trials using toxicity and efficacy odds ratios.
    Yin G; Li Y; Ji Y
    Biometrics; 2006 Sep; 62(3):777-84. PubMed ID: 16984320
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Revisiting the definition of dose-limiting toxicities in paediatric oncology phase I clinical trials: An analysis from the Innovative Therapies for Children with Cancer Consortium.
    Bautista F; Moreno L; Marshall L; Pearson ADJ; Geoerger B; Paoletti X
    Eur J Cancer; 2017 Nov; 86():275-284. PubMed ID: 29055843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Principles of dose finding studies in cancer: a comparison of trial designs.
    Jaki T; Clive S; Weir CJ
    Cancer Chemother Pharmacol; 2013 May; 71(5):1107-14. PubMed ID: 23299793
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dose-finding design using mixed-effect proportional odds model for longitudinal graded toxicity data in phase I oncology clinical trials.
    Doussau A; Thiébaut R; Paoletti X
    Stat Med; 2013 Dec; 32(30):5430-47. PubMed ID: 24018535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase I dose-escalation oncology trials with sequential multiple schedules.
    Günhan BK; Weber S; Seroutou A; Friede T
    BMC Med Res Methodol; 2021 Apr; 21(1):69. PubMed ID: 33853539
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design considerations and analysis planning of a phase 2a proof of concept study in rheumatoid arthritis in the presence of possible non-monotonicity.
    Liu F; Walters SJ; Julious SA
    BMC Med Res Methodol; 2017 Oct; 17(1):149. PubMed ID: 28969588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Bayesian hierarchal modeling approach to shortening phase I/II trials of anticancer drug combinations.
    Yada S; Hamada C
    Pharm Stat; 2018 Nov; 17(6):750-760. PubMed ID: 30112847
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Bayesian adaptive design for multi-dose, randomized, placebo-controlled phase I/II trials.
    Xie F; Ji Y; Tremmel L
    Contemp Clin Trials; 2012 Jul; 33(4):739-48. PubMed ID: 22426247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An adaptive model switching approach for phase I dose-finding trials.
    Daimon T; Zohar S
    Pharm Stat; 2013; 12(4):225-32. PubMed ID: 23801550
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accrual strategies for phase I trials with delayed patient outcome.
    Thall PF; Lee JJ; Tseng CH; Estey EH
    Stat Med; 1999 May; 18(10):1155-69. PubMed ID: 10363337
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TITE-gBOIN: Time-to-event Bayesian optimal interval design to accelerate dose-finding accounting for toxicity grades.
    Takeda K; Xia Q; Liu S; Rong A
    Pharm Stat; 2022 Mar; 21(2):496-506. PubMed ID: 34862715
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
    Guo B; Li Y
    Stat Med; 2015 Feb; 34(5):859-75. PubMed ID: 25413162
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uniformly most powerful Bayesian interval design for phase I dose-finding trials.
    Lin R; Yin G
    Pharm Stat; 2018 Nov; 17(6):710-724. PubMed ID: 30066466
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Innovations for phase I dose-finding designs in pediatric oncology clinical trials.
    Doussau A; Geoerger B; Jiménez I; Paoletti X
    Contemp Clin Trials; 2016 Mar; 47():217-27. PubMed ID: 26825023
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A default method to specify skeletons for Bayesian model averaging continual reassessment method for phase I clinical trials.
    Pan H; Yuan Y
    Stat Med; 2017 Jan; 36(2):266-279. PubMed ID: 26991076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Continual reassessment method for dose escalation clinical trials in oncology: a comparison of prior skeleton approaches using AZD3514 data.
    James GD; Symeonides SN; Marshall J; Young J; Clack G
    BMC Cancer; 2016 Aug; 16(1):703. PubMed ID: 27581751
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Bayesian interval dose-finding design addressingOckham's razor: mTPI-2.
    Guo W; Wang SJ; Yang S; Lynn H; Ji Y
    Contemp Clin Trials; 2017 Jul; 58():23-33. PubMed ID: 28458054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pharmacokinetics of a HER2 tyrosine kinase inhibitor CP-724,714 in patients with advanced malignant HER2 positive solid tumors: correlations with clinical characteristics and safety.
    Guo F; Letrent SP; Munster PN; Britten CD; Gelmon K; Tolcher AW; Sharma A
    Cancer Chemother Pharmacol; 2008 Jun; 62(1):97-109. PubMed ID: 17805538
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clinical pharmacokinetics and dose optimisation of carboplatin.
    Duffull SB; Robinson BA
    Clin Pharmacokinet; 1997 Sep; 33(3):161-83. PubMed ID: 9314610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.