BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30066397)

  • 1. Experimental shifts in phenology affect fitness, foraging, and parasitism in a native solitary bee.
    Farzan S; Yang LH
    Ecology; 2018 Oct; 99(10):2187-2195. PubMed ID: 30066397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progeny Density and Nest Availability Affect Parasitism Risk and Reproduction in a Solitary Bee (Osmia lignaria) (Hymenoptera: Megachilidae).
    Farzan S
    Environ Entomol; 2018 Feb; 47(1):70-76. PubMed ID: 29300852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The earlier the better? Nesting timing and reproductive success in subalpine cavity-nesting bees.
    Wong LH; Forrest JRK
    J Anim Ecol; 2021 May; 90(5):1353-1366. PubMed ID: 33656748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees.
    Schenk M; Krauss J; Holzschuh A
    J Anim Ecol; 2018 Jan; 87(1):139-149. PubMed ID: 28502082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecological traits explain long-term phenological trends in solitary bees.
    Dorian NN; McCarthy MW; Crone EE
    J Anim Ecol; 2023 Feb; 92(2):285-296. PubMed ID: 35839142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.
    Everaars J; Settele J; Dormann CF
    PLoS One; 2018; 13(2):e0188269. PubMed ID: 29444076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence phenology of Osmia lignaria subsp. lignaria (Hymenoptera: Megachilidae), its parasitoid Chrysura kyrae (Hymenoptera: Chrysididae), and bloom of Cercis canadensis.
    Kraemer ME; Favi FD
    Environ Entomol; 2010 Apr; 39(2):351-8. PubMed ID: 20388263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenological mismatches and the demography of solitary bees.
    Vázquez DP; Vitale N; Dorado J; Amico G; Stevani EL
    Proc Biol Sci; 2023 Jan; 290(1990):20221847. PubMed ID: 36629108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Nest Box Color and Release Sites on Osmia lignaria (Hymenoptera: Megachilidae) Reproductive Success in a Commercial Almond Orchard.
    Artz DR; Allan MJ; Wardell GI; Pitts-Singer TL
    J Econ Entomol; 2014 Dec; 107(6):2045-54. PubMed ID: 26470068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grasshopper species' seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change.
    Buckley LB; Graham SI; Nufio CR
    J Anim Ecol; 2021 May; 90(5):1252-1263. PubMed ID: 33630307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A specialist bee and its host plants experience phenological shifts at different rates in response to climate change.
    Weaver SA; Mallinger RE
    Ecology; 2022 May; 103(5):e3658. PubMed ID: 35129842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential for phenological mismatch between a perennial herb and its ground-nesting bee pollinator.
    Olliff-Yang RL; Mesler MR
    AoB Plants; 2018 Aug; 10(4):ply040. PubMed ID: 30046417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue orchard bee (Hymenoptera: Megachilidae) origin and orchard growing region affect female retention at artificial nest sites in cherry orchards.
    Scalici MB; McCabe LM; Alston DG; Peterson SS; Yost M; Pitts-Singer TL
    Environ Entomol; 2023 Aug; 52(4):681-691. PubMed ID: 37329144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate-associated phenological advances in bee pollinators and bee-pollinated plants.
    Bartomeus I; Ascher JS; Wagner D; Danforth BN; Colla S; Kornbluth S; Winfree R
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20645-9. PubMed ID: 22143794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts.
    Socolar JB; Epanchin PN; Beissinger SR; Tingley MW
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12976-12981. PubMed ID: 29133415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate driven disruption of transitional alpine bumble bee communities.
    Miller-Struttmann N; Miller Z; Galen C
    Glob Chang Biol; 2022 Nov; 28(21):6165-6179. PubMed ID: 36184909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between bee foraging and floral resource phenology shape bee populations and communities.
    Ogilvie JE; Forrest JR
    Curr Opin Insect Sci; 2017 Jun; 21():75-82. PubMed ID: 28822493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wildflower plantings promote blue orchard bee,
    Boyle NK; Artz DR; Lundin O; Ward K; Picklum D; Wardell GI; Williams NM; Pitts-Singer TL
    Ecol Evol; 2020 Apr; 10(7):3189-3199. PubMed ID: 32273980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct benefits and indirect costs of warm temperatures for high-elevation populations of a solitary bee.
    Forrest JR; Chisholm SP
    Ecology; 2017 Feb; 98(2):359-369. PubMed ID: 27861777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.