These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30066662)

  • 1. Emerging ensembles of kinetic parameters to characterize observed metabolic phenotypes.
    Colombo R; Damiani C; Gilbert D; Heiner M; Mauri G; Pescini D
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):251. PubMed ID: 30066662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks.
    Zomorrodi AR; Lafontaine Rivera JG; Liao JC; Maranas CD
    Biotechnol J; 2013 Sep; 8(9):1090-104. PubMed ID: 23450699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.
    Cotten C; Reed JL
    BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From annotated genomes to metabolic flux models and kinetic parameter fitting.
    Segrè D; Zucker J; Katz J; Lin X; D'haeseleer P; Rindone WP; Kharchenko P; Nguyen DH; Wright MA; Church GM
    OMICS; 2003; 7(3):301-16. PubMed ID: 14583118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
    Adadi R; Volkmer B; Milo R; Heinemann M; Shlomi T
    PLoS Comput Biol; 2012; 8(7):e1002575. PubMed ID: 22792053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux.
    Tan Y; Rivera JG; Contador CA; Asenjo JA; Liao JC
    Metab Eng; 2011 Jan; 13(1):60-75. PubMed ID: 21075211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Omics data for sampling thermodynamically feasible kinetic models.
    de Leeuw M; Matos MRA; Nielsen LK
    Metab Eng; 2023 Jul; 78():41-47. PubMed ID: 37209863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes.
    De Martino D
    Phys Rev E; 2017 Dec; 96(6-1):060401. PubMed ID: 29347381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic network structure determines key aspects of functionality and regulation.
    Stelling J; Klamt S; Bettenbrock K; Schuster S; Gilles ED
    Nature; 2002 Nov; 420(6912):190-3. PubMed ID: 12432396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations.
    Hameri T; Fengos G; Ataman M; Miskovic L; Hatzimanikatis V
    Metab Eng; 2019 Mar; 52():29-41. PubMed ID: 30455161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scalable method for parameter identification in kinetic models of metabolism using steady-state data.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
    Fleming RM; Thiele I; Provan G; Nasheuer HP
    J Theor Biol; 2010 Jun; 264(3):683-92. PubMed ID: 20230840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli.
    Jahan N; Maeda K; Matsuoka Y; Sugimoto Y; Kurata H
    Microb Cell Fact; 2016 Jun; 15(1):112. PubMed ID: 27329289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.