These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 30066665)
1. Extracting psychiatric stressors for suicide from social media using deep learning. Du J; Zhang Y; Luo J; Jia Y; Wei Q; Tao C; Xu H BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):43. PubMed ID: 30066665 [TBL] [Abstract][Full Text] [Related]
2. Ontology-Based Healthcare Named Entity Recognition from Twitter Messages Using a Recurrent Neural Network Approach. Batbaatar E; Ryu KH Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31569654 [TBL] [Abstract][Full Text] [Related]
3. Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach. Metzler H; Baginski H; Niederkrotenthaler T; Garcia D J Med Internet Res; 2022 Aug; 24(8):e34705. PubMed ID: 35976193 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study. Visweswaran S; Colditz JB; O'Halloran P; Han NR; Taneja SB; Welling J; Chu KH; Sidani JE; Primack BA J Med Internet Res; 2020 Aug; 22(8):e17478. PubMed ID: 32784184 [TBL] [Abstract][Full Text] [Related]
5. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
6. Understanding Depressive Symptoms and Psychosocial Stressors on Twitter: A Corpus-Based Study. Mowery D; Smith H; Cheney T; Stoddard G; Coppersmith G; Bryan C; Conway M J Med Internet Res; 2017 Feb; 19(2):e48. PubMed ID: 28246066 [TBL] [Abstract][Full Text] [Related]
7. Psychiatric stressor recognition from clinical notes to reveal association with suicide. Zhang Y; Zhang OR; Li R; Flores A; Selek S; Zhang XY; Xu H Health Informatics J; 2019 Dec; 25(4):1846-1862. PubMed ID: 30328378 [TBL] [Abstract][Full Text] [Related]
8. Biomedical named entity recognition using deep neural networks with contextual information. Cho H; Lee H BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938 [TBL] [Abstract][Full Text] [Related]
9. Adversarial active learning for the identification of medical concepts and annotation inconsistency. Yu G; Yang Y; Wang X; Zhen H; He G; Li Z; Zhao Y; Shu Q; Shu L J Biomed Inform; 2020 Aug; 108():103481. PubMed ID: 32687985 [TBL] [Abstract][Full Text] [Related]
10. Public Perception Analysis of Tweets During the 2015 Measles Outbreak: Comparative Study Using Convolutional Neural Network Models. Du J; Tang L; Xiang Y; Zhi D; Xu J; Song HY; Tao C J Med Internet Res; 2018 Jul; 20(7):e236. PubMed ID: 29986843 [TBL] [Abstract][Full Text] [Related]
11. Detection of Hate Speech in COVID-19-Related Tweets in the Arab Region: Deep Learning and Topic Modeling Approach. Alshalan R; Al-Khalifa H; Alsaeed D; Al-Baity H; Alshalan S J Med Internet Res; 2020 Dec; 22(12):e22609. PubMed ID: 33207310 [TBL] [Abstract][Full Text] [Related]
12. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. Cocos A; Fiks AG; Masino AJ J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747 [TBL] [Abstract][Full Text] [Related]
13. Developing an Automatic System for Classifying Chatter About Health Services on Twitter: Case Study for Medicaid. Yang YC; Al-Garadi MA; Bremer W; Zhu JM; Grande D; Sarker A J Med Internet Res; 2021 May; 23(5):e26616. PubMed ID: 33938807 [TBL] [Abstract][Full Text] [Related]
14. Public Surveillance of Social Media for Suicide Using Advanced Deep Learning Models in Japan: Time Series Study From 2012 to 2022. Wang S; Ning H; Huang X; Xiao Y; Zhang M; Yang EF; Sadahiro Y; Liu Y; Li Z; Hu T; Fu X; Li Z; Zeng Y J Med Internet Res; 2023 Jun; 25():e47225. PubMed ID: 37267022 [TBL] [Abstract][Full Text] [Related]
15. Clinical Named Entity Recognition Using Deep Learning Models. Wu Y; Jiang M; Xu J; Zhi D; Xu H AMIA Annu Symp Proc; 2017; 2017():1812-1819. PubMed ID: 29854252 [TBL] [Abstract][Full Text] [Related]
16. Psychiatry on Twitter: Content Analysis of the Use of Psychiatric Terms in French. Delanys S; Benamara F; Moriceau V; Olivier F; Mothe J JMIR Form Res; 2022 Feb; 6(2):e18539. PubMed ID: 35156925 [TBL] [Abstract][Full Text] [Related]
17. A deep learning approach for identifying cancer survivors living with post-traumatic stress disorder on Twitter. Ismail NH; Liu N; Du M; He Z; Hu X BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 4):254. PubMed ID: 33317508 [TBL] [Abstract][Full Text] [Related]
18. Automated processing of social media content for radiologists: applied deep learning to radiological content on twitter during COVID-19 pandemic. Khurana S; Chopra R; Khurana B Emerg Radiol; 2021 Jun; 28(3):477-483. PubMed ID: 33459907 [TBL] [Abstract][Full Text] [Related]
19. A deep multi-view imbalanced learning approach for identifying informative COVID-19 tweets from social media. Long KK; Kwok SWH; Kotz J; Wang G Comput Biol Med; 2023 Sep; 164():107232. PubMed ID: 37531859 [TBL] [Abstract][Full Text] [Related]
20. HAPI: An efficient Hybrid Feature Engineering-based Approach for Propaganda Identification in social media. Khanday AMUD; Wani MA; Rabani ST; Khan QR; Abd El-Latif AA PLoS One; 2024; 19(7):e0302583. PubMed ID: 38985703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]