These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 30067016)
1. Graphdiyne Nanowall for Enhanced Photoelectrochemical Performance of Si Heterojunction Photoanode. Zhang S; Yin C; Kang Z; Wu P; Wu J; Zhang Z; Liao Q; Zhang J; Zhang Y ACS Appl Mater Interfaces; 2019 Jan; 11(3):2745-2749. PubMed ID: 30067016 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and Properties of 2D Carbon-Graphdiyne. Jia Z; Li Y; Zuo Z; Liu H; Huang C; Li Y Acc Chem Res; 2017 Oct; 50(10):2470-2478. PubMed ID: 28915007 [TBL] [Abstract][Full Text] [Related]
3. High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution. Wang HP; Sun K; Noh SY; Kargar A; Tsai ML; Huang MY; Wang D; He JH Nano Lett; 2015 May; 15(5):2817-24. PubMed ID: 25665138 [TBL] [Abstract][Full Text] [Related]
4. Graphdiyne-Based Flexible Photodetectors with High Responsivity and Detectivity. Zhang Y; Huang P; Guo J; Shi R; Huang W; Shi Z; Wu L; Zhang F; Gao L; Li C; Zhang X; Xu J; Zhang H Adv Mater; 2020 Jun; 32(23):e2001082. PubMed ID: 32338405 [TBL] [Abstract][Full Text] [Related]
5. Photoelectrochemical platform for MicroRNA let-7a detection based on graphdiyne loaded with AuNPs modified electrode coupled with alkaline phosphatase. Li Y; Li X; Meng Y; Hun X Biosens Bioelectron; 2019 Apr; 130():269-275. PubMed ID: 30771716 [TBL] [Abstract][Full Text] [Related]
6. Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production. Li J; Gao X; Liu B; Feng Q; Li XB; Huang MY; Liu Z; Zhang J; Tung CH; Wu LZ J Am Chem Soc; 2016 Mar; 138(12):3954-7. PubMed ID: 26962887 [TBL] [Abstract][Full Text] [Related]
7. Highly Efficient Van Der Waals Heterojunction on Graphdiyne toward the High-Performance Photodetector. Do DP; Hong C; Bui VQ; Pham TH; Seo S; Do VD; Phan TL; Tran KM; Haldar S; Ahn BW; Lim SC; Yu WJ; Kim SG; Kim JH; Lee H Adv Sci (Weinh); 2023 Sep; 10(25):e2300925. PubMed ID: 37424035 [TBL] [Abstract][Full Text] [Related]
8. Silicon/Organic Heterojunction for Photoelectrochemical Energy Conversion Photoanode with a Record Photovoltage. Cui W; Wu S; Chen F; Xia Z; Li Y; Zhang XH; Song T; Lee ST; Sun B ACS Nano; 2016 Oct; 10(10):9411-9419. PubMed ID: 27617584 [TBL] [Abstract][Full Text] [Related]
9. NiO Nanoparticles Anchored on Phosphorus-Doped α-Fe Li F; Li J; Zhang J; Gao L; Long X; Hu Y; Li S; Jin J; Ma J ChemSusChem; 2018 Jul; 11(13):2156-2164. PubMed ID: 29768719 [TBL] [Abstract][Full Text] [Related]
10. Two-step electrodeposition to fabricate the p-n heterojunction of a Cu Bai S; Liu J; Cui M; Luo R; He J; Chen A Dalton Trans; 2018 May; 47(19):6763-6771. PubMed ID: 29717319 [TBL] [Abstract][Full Text] [Related]
11. A facile approach for preparing densely-packed individual p-NiO/n-Fe Singh AK; Sarkar D Nanoscale; 2018 Jul; 10(27):13130-13139. PubMed ID: 29963674 [TBL] [Abstract][Full Text] [Related]
12. State, synthesis, perspective applications, and challenges of Graphdiyne and its analogues: A review of recent research. Hayat A; Sohail M; Moussa SB; Al-Muhanna MK; Iqbal W; Ajmal Z; Raza S; Al-Hadeethi Y; Orooji Y Adv Colloid Interface Sci; 2023 Sep; 319():102969. PubMed ID: 37598456 [TBL] [Abstract][Full Text] [Related]
13. High performance of visible-light driven hydrogen production over graphdiyne (g-C Wang K; Kong X; Xie H; Li S; Wang M; Jin Z Dalton Trans; 2023 Jun; 52(25):8716-8727. PubMed ID: 37310365 [TBL] [Abstract][Full Text] [Related]
14. A ZnO/ZnFe Lan Y; Liu Z; Guo Z; Li X; Zhao L; Zhan L; Zhang M Dalton Trans; 2018 Sep; 47(35):12181-12187. PubMed ID: 30106080 [TBL] [Abstract][Full Text] [Related]
15. Preparation of the TiO Fan X; Wang T; Gao B; Gong H; Xue H; Guo H; Song L; Xia W; Huang X; He J Langmuir; 2016 Dec; 32(50):13322-13332. PubMed ID: 27936327 [TBL] [Abstract][Full Text] [Related]
16. Graphdiyne-Promoted Highly Efficient Photocatalytic Activity of Graphdiyne/Silver Phosphate Pickering Emulsion Under Visible-Light Irradiation. Guo S; Jiang Y; Wu F; Yu P; Liu H; Li Y; Mao L ACS Appl Mater Interfaces; 2019 Jan; 11(3):2684-2691. PubMed ID: 29745636 [TBL] [Abstract][Full Text] [Related]
17. Influence of the physical, structural and chemical properties on the photoresponse property of magnetron sputtered TiO2 for the application of water splitting. Rahman M; MacElroy JM; Dowling DP J Nanosci Nanotechnol; 2011 Oct; 11(10):8642-51. PubMed ID: 22400237 [TBL] [Abstract][Full Text] [Related]
18. Structural Characterization and Identification of Graphdiyne and Graphdiyne-Based Materials. Bao H; Wang L; Li C; Luo J ACS Appl Mater Interfaces; 2019 Jan; 11(3):2717-2729. PubMed ID: 29845862 [TBL] [Abstract][Full Text] [Related]
19. Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water Splitting. Hui L; Jia D; Yu H; Xue Y; Li Y ACS Appl Mater Interfaces; 2019 Jan; 11(3):2618-2625. PubMed ID: 29558102 [TBL] [Abstract][Full Text] [Related]