These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
407 related articles for article (PubMed ID: 30067023)
1. Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer. Lee YS; Baek S; Lee H; Reginald SS; Kim Y; Kang H; Choi IG; Chang IS ACS Appl Mater Interfaces; 2018 Aug; 10(34):28615-28626. PubMed ID: 30067023 [TBL] [Abstract][Full Text] [Related]
2. Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide. Lee H; Lee YS; Reginald SS; Baek S; Lee EM; Choi IG; Chang IS Biosens Bioelectron; 2020 Oct; 165():112427. PubMed ID: 32729543 [TBL] [Abstract][Full Text] [Related]
3. Direct electron transfer-type bioelectrocatalysis of FAD-dependent glucose dehydrogenase using porous gold electrodes and enzymatically implanted platinum nanoclusters. Adachi T; Fujii T; Honda M; Kitazumi Y; Shirai O; Kano K Bioelectrochemistry; 2020 Jun; 133():107457. PubMed ID: 31978858 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase. Ishida K; Orihara K; Muguruma H; Iwasa H; Hiratsuka A; Tsuji K; Kishimoto T Anal Sci; 2018; 34(7):783-787. PubMed ID: 29998959 [TBL] [Abstract][Full Text] [Related]
5. Significant enhancement of direct electric communication across enzyme-electrode interface via nano-patterning of synthetic glucose dehydrogenase on spatially tunable gold nanoparticle (AuNP)-modified electrode. Lee H; Lee YS; Lee SK; Baek S; Choi IG; Jang JH; Chang IS Biosens Bioelectron; 2019 Feb; 126():170-177. PubMed ID: 30399519 [TBL] [Abstract][Full Text] [Related]
6. Orientation-Controllable Enzyme Cascade on Electrode for Bioelectrocatalytic Chain Reaction. Lee H; Bang Y; Chang IS ACS Appl Mater Interfaces; 2023 Aug; 15(34):40355-40368. PubMed ID: 37552888 [TBL] [Abstract][Full Text] [Related]
7. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase. Yamashita Y; Suzuki N; Hirose N; Kojima K; Tsugawa W; Sode K Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561779 [TBL] [Abstract][Full Text] [Related]
8. Site-specifically wired and oriented glucose dehydrogenase fused to a minimal cytochrome with high glucose sensing sensitivity. Algov I; Feiertag A; Alfonta L Biosens Bioelectron; 2021 May; 180():113117. PubMed ID: 33677358 [TBL] [Abstract][Full Text] [Related]
9. Effects of Cross-linker Chemistry on Bioelectrocatalytic Reactions in a Redox Cross-linked Network of Glucose Dehydrogenase and Thionine. Hossain MM; Rezki M; Shalayel I; Zebda A; Tsujimura S ACS Appl Mater Interfaces; 2024 Aug; 16(33):44004-44017. PubMed ID: 39132979 [TBL] [Abstract][Full Text] [Related]
10. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b Yanase T; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Sode K Biochem Biophys Res Commun; 2020 Sep; 530(1):82-86. PubMed ID: 32828319 [TBL] [Abstract][Full Text] [Related]
11. Highly Efficient Flavin-Adenine Dinucleotide Glucose Dehydrogenase Fused to a Minimal Cytochrome C Domain. Algov I; Grushka J; Zarivach R; Alfonta L J Am Chem Soc; 2017 Dec; 139(48):17217-17220. PubMed ID: 28915057 [TBL] [Abstract][Full Text] [Related]
12. A cytochrome b-glucose dehydrogenase chimeric enzyme capable of direct electron transfer. Viehauser MC; Breslmayr E; Scheiblbrandner S; Schachinger F; Ma S; Ludwig R Biosens Bioelectron; 2022 Jan; 196():113704. PubMed ID: 34695687 [TBL] [Abstract][Full Text] [Related]
13. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer. Ito K; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Ikebukuro K; Lin CE; La Belle J; Yoshida H; Sode K Biosens Bioelectron; 2019 Jan; 123():114-123. PubMed ID: 30057265 [TBL] [Abstract][Full Text] [Related]
14. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers. Lee I; Loew N; Tsugawa W; Lin CE; Probst D; La Belle JT; Sode K Bioelectrochemistry; 2018 Jun; 121():1-6. PubMed ID: 29291433 [TBL] [Abstract][Full Text] [Related]
15. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Zhao M; Gao Y; Sun J; Gao F Anal Chem; 2015 Mar; 87(5):2615-22. PubMed ID: 25666266 [TBL] [Abstract][Full Text] [Related]
16. Gold-Coated M13 Bacteriophage as a Template for Glucose Oxidase Biofuel Cells with Direct Electron Transfer. Blaik RA; Lan E; Huang Y; Dunn B ACS Nano; 2016 Jan; 10(1):324-32. PubMed ID: 26593851 [TBL] [Abstract][Full Text] [Related]
18. Orientated Immobilization of FAD-Dependent Glucose Dehydrogenase on Electrode by Carbohydrate-Binding Module Fusion for Efficient Glucose Assay. Han Q; Gong W; Zhang Z; Wang L; Wang B; Cai L; Meng Q; Li Y; Liu Q; Yang Y; Zheng L; Ma Y Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073858 [TBL] [Abstract][Full Text] [Related]
19. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase. Ito Y; Okuda-Shimazaki J; Tsugawa W; Loew N; Shitanda I; Lin CE; La Belle J; Sode K Biosens Bioelectron; 2019 Mar; 129():189-197. PubMed ID: 30721794 [TBL] [Abstract][Full Text] [Related]
20. Anchoring PQQ-Glucose Dehydrogenase with Electropolymerized Azines for the Most Efficient Bioelectrocatalysis. Komkova MA; Orlov AK; Galushin AA; Andreev EA; Karyakin AA Anal Chem; 2021 Sep; 93(35):12116-12121. PubMed ID: 34431658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]