BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

20 related articles for article (PubMed ID: 30067024)

  • 1. Identification and Validation of Metabolic Markers for Adulteration Detection of Edible Oils Using Metabolic Networks.
    Dou X; Zhang L; Wang X; Yang R; Wang X; Ma F; Yu L; Mao J; Li H; Wang X; Li P
    Metabolites; 2020 Feb; 10(3):. PubMed ID: 32121379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edible Plant Oil: Global Status, Health Issues, and Perspectives.
    Zhou Y; Zhao W; Lai Y; Zhang B; Zhang D
    Front Plant Sci; 2020; 11():1315. PubMed ID: 32983204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and quantification of Cu-chlorophyll adulteration of edible oils.
    Fang M; Tsai CF; Wu GY; Tseng SH; Cheng HF; Kuo CH; Hsu CL; Kao YM; Shih DY; Chiang YM
    Food Addit Contam Part B Surveill; 2015; 8(3):157-62. PubMed ID: 26010536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of olive oil adulteration with copper-chlorophyll derivatives.
    Roca M; Gallardo-Guerrero L; Mínguez-Mosquera MI; Gandul Rojas B
    J Agric Food Chem; 2010 Jan; 58(1):51-6. PubMed ID: 20000773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Screening and confirmation of copper chlorophyll adulteration in olive oils].
    Song S; Wang D; Yang J; Liu Q; Zhao Y
    Zhonghua Yu Fang Yi Xue Za Zhi; 2015 Jan; 49(1):45-9. PubMed ID: 25876495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid detection of copper chlorophyll in vegetable oils based on surface-enhanced Raman spectroscopy.
    Lian WN; Shiue J; Wang HH; Hong WC; Shih PH; Hsu CK; Huang CY; Hsing CR; Wei CM; Wang JK; Wang YL
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(5):627-34. PubMed ID: 25822695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers.
    Dou X; Mao J; Zhang L; Xie H; Chen L; Yu L; Ma F; Wang X; Zhang Q; Li P
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29370131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic noses in classification and quality control of edible oils: A review.
    Majchrzak T; Wojnowski W; Dymerski T; Gębicki J; Namieśnik J
    Food Chem; 2018 Apr; 246():192-201. PubMed ID: 29291839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Photometric Assay for Copper Chlorophyll Adulterants in Edible Oil by the Aid of an Ultraviolet-Photobleaching Pretreatment.
    Wang HC; Hou YT; Hsieh BC
    J Agric Food Chem; 2018 Aug; 66(33):8859-8863. PubMed ID: 30067024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced process analytical tools for identification of adulterants in edible oils - A review.
    Rifna EJ; Pandiselvam R; Kothakota A; Subba Rao KV; Dwivedi M; Kumar M; Thirumdas R; Ramesh SV
    Food Chem; 2022 Feb; 369():130898. PubMed ID: 34455326
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 12.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 1.