BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 30067082)

  • 1. Potential role of LSD1 inhibitors in the treatment of sickle cell disease: a review of preclinical animal model data.
    Rivers A; Jagadeeswaran R; Lavelle D
    Am J Physiol Regul Integr Comp Physiol; 2018 Oct; 315(4):R840-R847. PubMed ID: 30067082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral administration of the LSD1 inhibitor ORY-3001 increases fetal hemoglobin in sickle cell mice and baboons.
    Rivers A; Vaitkus K; Jagadeeswaran R; Ruiz MA; Ibanez V; Ciceri F; Cavalcanti F; Molokie RE; Saunthararajah Y; Engel JD; DeSimone J; Lavelle D
    Exp Hematol; 2018 Nov; 67():60-64.e2. PubMed ID: 30125603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological inhibition of LSD1 and mTOR reduces mitochondrial retention and associated ROS levels in the red blood cells of sickle cell disease.
    Jagadeeswaran R; Vazquez BA; Thiruppathi M; Ganesh BB; Ibanez V; Cui S; Engel JD; Diamond AM; Molokie RE; DeSimone J; Lavelle D; Rivers A
    Exp Hematol; 2017 Jun; 50():46-52. PubMed ID: 28238805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RN-1, a potent and selective lysine-specific demethylase 1 inhibitor, increases γ-globin expression, F reticulocytes, and F cells in a sickle cell disease mouse model.
    Rivers A; Vaitkus K; Ruiz MA; Ibanez V; Jagadeeswaran R; Kouznetsova T; DeSimone J; Lavelle D
    Exp Hematol; 2015 Jul; 43(7):546-53.e1-3. PubMed ID: 25931013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease.
    Krishnamoorthy S; Pace B; Gupta D; Sturtevant S; Li B; Makala L; Brittain J; Moore N; Vieira BF; Thullen T; Stone I; Li H; Hobbs WE; Light DR
    JCI Insight; 2017 Oct; 2(20):. PubMed ID: 29046485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The LSD1 inhibitor RN-1 induces fetal hemoglobin synthesis and reduces disease pathology in sickle cell mice.
    Cui S; Lim KC; Shi L; Lee M; Jearawiriyapaisarn N; Myers G; Campbell A; Harro D; Iwase S; Trievel RC; Rivers A; DeSimone J; Lavelle D; Saunthararajah Y; Engel JD
    Blood; 2015 Jul; 126(3):386-96. PubMed ID: 26031919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy and safety of long-term RN-1 treatment to increase HbF in baboons.
    Ibanez V; Vaitkus K; Rivers A; Molokie R; Cui S; Engel JD; DeSimone J; Lavelle D
    Blood; 2017 Jan; 129(2):260-263. PubMed ID: 27908882
    [No Abstract]   [Full Text] [Related]  

  • 8. Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice.
    Lopez NH; Li B; Palani C; Siddaramappa U; Takezaki M; Xu H; Zhi W; Pace BS
    PLoS One; 2022; 17(5):e0261799. PubMed ID: 35639781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual red blood cell fetal hemoglobin quantification allows to determine protective thresholds in sickle cell disease.
    Hebert N; Rakotoson MG; Bodivit G; Audureau E; Bencheikh L; Kiger L; Oubaya N; Pakdaman S; Sakka M; Di Liberto G; Chadebech P; Vingert B; Pirenne F; Galactéros F; Cambot M; Bartolucci P
    Am J Hematol; 2020 Nov; 95(11):1235-1245. PubMed ID: 32681733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the LSD1 inhibitor RN-1 on γ-globin and global gene expression during erythroid differentiation in baboons (Papio anubis).
    Ibanez V; Vaitkus K; Ruiz MA; Lei Z; Maienschein-Cline M; Arbieva Z; Lavelle D
    PLoS One; 2023; 18(12):e0289860. PubMed ID: 38134183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ineffective erythropoiesis in sickle cell disease: new insights and future implications.
    El Nemer W; Godard A; El Hoss S
    Curr Opin Hematol; 2021 May; 28(3):171-176. PubMed ID: 33631786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis).
    Rivers A; Vaitkus K; Ibanez V; Ruiz MA; Jagadeeswaran R; Saunthararajah Y; Cui S; Engel JD; DeSimone J; Lavelle D
    Haematologica; 2016 Jun; 101(6):688-97. PubMed ID: 26858356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: A randomized phase 1 study.
    Molokie R; Lavelle D; Gowhari M; Pacini M; Krauz L; Hassan J; Ibanez V; Ruiz MA; Ng KP; Woost P; Radivoyevitch T; Pacelli D; Fada S; Rump M; Hsieh M; Tisdale JF; Jacobberger J; Phelps M; Engel JD; Saraf S; Hsu LL; Gordeuk V; DeSimone J; Saunthararajah Y
    PLoS Med; 2017 Sep; 14(9):e1002382. PubMed ID: 28880867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approaches to the treatment of sickle cell disease: the potential of histone deacetylase inhibitors.
    Okam MM; Ebert BL
    Expert Rev Hematol; 2012 Jun; 5(3):303-11. PubMed ID: 22780210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in fetal hemoglobin parameters and predicted hemoglobin S polymerization in sickle cell children in the first two years of life: Parisian Prospective Study on Sickle Cell Disease.
    Maier-Redelsperger M; Noguchi CT; de Montalembert M; Rodgers GP; Schechter AN; Gourbil A; Blanchard D; Jais JP; Ducrocq R; Peltier JY
    Blood; 1994 Nov; 84(9):3182-8. PubMed ID: 7524767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical studies with fetal hemoglobin-enhancing agents in sickle cell disease.
    Saunthararajah Y; DeSimone J
    Semin Hematol; 2004 Oct; 41(4 Suppl 6):11-6. PubMed ID: 15534852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial targeting of epigenome-modifying enzymes with decitabine and RN-1 synergistically increases HbF.
    Ibanez V; Vaitkus K; Zhang X; Ramasamy J; Rivers AE; Saunthararajah Y; Molokie R; Lavelle D
    Blood Adv; 2023 Aug; 7(15):3891-3902. PubMed ID: 36884303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging disease-modifying therapies for sickle cell disease.
    Carden MA; Little J
    Haematologica; 2019 Sep; 104(9):1710-1719. PubMed ID: 31413089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xanthine Oxidase Drives Hemolysis and Vascular Malfunction in Sickle Cell Disease.
    Schmidt HM; Wood KC; Lewis SE; Hahn SA; Williams XM; McMahon B; Baust JJ; Yuan S; Bachman TN; Wang Y; Oh JY; Ghosh S; Ofori-Acquah SF; Lebensburger JD; Patel RP; Du J; Vitturi DA; Kelley EE; Straub AC
    Arterioscler Thromb Vasc Biol; 2021 Feb; 41(2):769-782. PubMed ID: 33267657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathophysiology and recent therapeutic insights of sickle cell disease.
    Shah F; Dwivedi M
    Ann Hematol; 2020 May; 99(5):925-935. PubMed ID: 32157419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.