These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 30067169)
1. Epidemiology of Pseudomonas aeruginosa in agricultural areas Schroth MN; Cho JJ; Green SK; Kominos SD; Microbiology Society Publishing J Med Microbiol; 2018 Aug; 67(8):1191-1201. PubMed ID: 30067169 [TBL] [Abstract][Full Text] [Related]
2. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Green SK; Schroth MN; Cho JJ; Kominos SK; Vitanza-jack VB Appl Microbiol; 1974 Dec; 28(6):987-91. PubMed ID: 4217591 [TBL] [Abstract][Full Text] [Related]
3. Sulfated phenolic acids in plants. Supikova K; Kosinova A; Vavrusa M; Koplikova L; François A; Pospisil J; Zatloukal M; Wever R; Hartog A; Gruz J Planta; 2022 May; 255(6):124. PubMed ID: 35562552 [TBL] [Abstract][Full Text] [Related]
4. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India. Nithya A; Babu S BMC Microbiol; 2017 Mar; 17(1):64. PubMed ID: 28288566 [TBL] [Abstract][Full Text] [Related]
5. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. Zuluaga MYA; Lima Milani KM; Azeredo Gonçalves LS; Martinez de Oliveira AL PLoS One; 2020; 15(1):e0227422. PubMed ID: 31923250 [TBL] [Abstract][Full Text] [Related]
6. Differential attachment to and subsequent contamination of agricultural crops by Salmonella enterica. Barak JD; Liang A; Narm KE Appl Environ Microbiol; 2008 Sep; 74(17):5568-70. PubMed ID: 18606796 [TBL] [Abstract][Full Text] [Related]
7. Comparison of virulence between clinical and environmental Pseudomonas aeruginosa isolates. Vives-Flórez M; Garnica D Int Microbiol; 2006 Dec; 9(4):247-52. PubMed ID: 17236157 [TBL] [Abstract][Full Text] [Related]
8. Emergence of Luo J; Yao X; Lv L; Doi Y; Huang X; Huang S; Liu JH Antimicrob Agents Chemother; 2017 Oct; 61(10):. PubMed ID: 28739785 [TBL] [Abstract][Full Text] [Related]
9. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. Fismes J; Perrin-Ganier C; Empereur-Bissonnet P; Morel JL J Environ Qual; 2002; 31(5):1649-56. PubMed ID: 12371182 [TBL] [Abstract][Full Text] [Related]
10. Rhizospheric and endophytic Pseudomonas aeruginosa in edible vegetable plants share molecular and metabolic traits with clinical isolates. Ambreetha S; Marimuthu P; Mathee K; Balachandar D J Appl Microbiol; 2022 Apr; 132(4):3226-3248. PubMed ID: 34608722 [TBL] [Abstract][Full Text] [Related]
11. Fate of Escherichia coli O145 present naturally in bovine slurry applied to vegetables before harvest, after washing and simulated wholesale and retail distribution. Hutchison ML; Harrison D; Heath JF; Monaghan JM J Appl Microbiol; 2017 Dec; 123(6):1597-1606. PubMed ID: 28948664 [TBL] [Abstract][Full Text] [Related]
12. Strategies to enhance fresh produce decontamination using combined treatments of ultraviolet, washing and disinfectants. Huang R; de Vries D; Chen H Int J Food Microbiol; 2018 Oct; 283():37-44. PubMed ID: 29957346 [TBL] [Abstract][Full Text] [Related]
13. Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber. Bradley GG; Punja ZK Can J Microbiol; 2010 Nov; 56(11):896-905. PubMed ID: 21076480 [TBL] [Abstract][Full Text] [Related]
14. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria. Hsu CK; Micallef SA Int J Food Microbiol; 2017 Oct; 259():1-6. PubMed ID: 28778009 [TBL] [Abstract][Full Text] [Related]
15. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus). Lechner M; Knapp H J Agric Food Chem; 2011 Oct; 59(20):11011-8. PubMed ID: 21905714 [TBL] [Abstract][Full Text] [Related]
16. Isolation, characterization and colonization of 1-aminocyclopropane-1-carboxylate deaminase-producing bacteria XG32 and DP24. Wang MX; Liu J; Chen SL; Yan SZ World J Microbiol Biotechnol; 2012 Mar; 28(3):1155-62. PubMed ID: 22805836 [TBL] [Abstract][Full Text] [Related]
17. A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies. Hartwright LM; Hunter PJ; Walsh JA Fungal Biol; 2010 Jan; 114(1):26-33. PubMed ID: 20965058 [TBL] [Abstract][Full Text] [Related]
19. [Characteristics and Evaluation of Heavy Metal Pollution in Vegetables in Guangzhou]. Chen ZL; Huang L; Zhou CY; Zhong SX; Wang X; Dai Y; Jiang XL Huan Jing Ke Xue; 2017 Jan; 38(1):389-398. PubMed ID: 29965071 [TBL] [Abstract][Full Text] [Related]
20. Comparison of sample preparation methods for the recovery of foodborne pathogens from fresh produce. Kim SR; Yoon Y; Kim WI; Park KH; Yun HJ; Chung DH; Yun JC; Ryu KY J Food Prot; 2012 Jul; 75(7):1213-8. PubMed ID: 22980003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]