These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30067264)

  • 1. What is the best or most relevant global minimum for nanoclusters? Predicting, comparing and recycling cluster structures with WASP@N.
    Woodley SM; Lazauskas T; Illingworth M; Carter AC; Sokol AA
    Faraday Discuss; 2018 Oct; 211(0):593-611. PubMed ID: 30067264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure prediction of nanoclusters; a direct or a pre-screened search on the DFT energy landscape?
    Farrow MR; Chow Y; Woodley SM
    Phys Chem Chem Phys; 2014 Oct; 16(39):21119-34. PubMed ID: 25017305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration of multiple energy landscapes for zirconia nanoclusters.
    Woodley SM; Hamad S; Catlow CR
    Phys Chem Chem Phys; 2010 Aug; 12(30):8454-65. PubMed ID: 20617256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strategy to find minimal energy nanocluster structures.
    Rogan J; Varas A; Valdivia JA; Kiwi M
    J Comput Chem; 2013 Nov; 34(29):2548-56. PubMed ID: 24037778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tree Growth-Hybrid Genetic Algorithm for Predicting the Structure of Small (TiO2)n, n = 2-13, Nanoclusters.
    Chen M; Dixon DA
    J Chem Theory Comput; 2013 Jul; 9(7):3189-200. PubMed ID: 26583996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy landscape exploration of sub-nanometre copper-silver clusters.
    Heard CJ; Johnston RL; Schön JC
    Chemphyschem; 2015 May; 16(7):1461-9. PubMed ID: 25784077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A detailed investigation on the global minimum structures of mixed rare-gas clusters: geometry, energetics, and site occupancy.
    Marques JM; Pereira FB
    J Comput Chem; 2013 Mar; 34(6):505-17. PubMed ID: 23108580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From monomer to monolayer: a global optimisation study of (ZnO)n nanoclusters on the Ag surface.
    Demiroglu I; Woodley SM; Sokol AA; Bromley ST
    Nanoscale; 2014 Dec; 6(24):14754-65. PubMed ID: 25354937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative search strategy for minimal energy nanocluster structures: the case of rhodium, palladium, and silver.
    Rogan J; García G; Loyola C; Orellana W; Ramírez R; Kiwi M
    J Chem Phys; 2006 Dec; 125(21):214708. PubMed ID: 17166041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives on the energy landscape of Au-Cl binary systems from the structural phase diagram of AuxCly (x + y = 20).
    Tian Z; Cheng L
    Phys Chem Chem Phys; 2015 May; 17(20):13421-8. PubMed ID: 25927874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure elucidation and construction of isomerisation pathways in small to moderate-sized (6-27) MgO nanoclusters: an adaptive mutation simulated annealing based analysis with quantum chemical calculations.
    Ghosh K; Sharma R; Chaudhury P
    Phys Chem Chem Phys; 2020 May; 22(17):9616-9629. PubMed ID: 32324181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient genetic algorithm for structure prediction at the nanoscale.
    Lazauskas T; Sokol AA; Woodley SM
    Nanoscale; 2017 Mar; 9(11):3850-3864. PubMed ID: 28252128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures and Energy Landscapes of Hydrated Sulfate Clusters.
    Smeeton LC; Farrell JD; Oakley MT; Wales DJ; Johnston RL
    J Chem Theory Comput; 2015 May; 11(5):2377-84. PubMed ID: 26574432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic clusters with addressable complexity.
    Wales DJ
    J Chem Phys; 2017 Feb; 146(5):054306. PubMed ID: 28178805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Global Optimizer for Nanoclusters.
    Khatun M; Majumdar RS; Anoop A
    Front Chem; 2019; 7():644. PubMed ID: 31612127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic search for minimum structures of small gold clusters Au(n) (n=2-20) and their electronic properties.
    Assadollahzadeh B; Schwerdtfeger P
    J Chem Phys; 2009 Aug; 131(6):064306. PubMed ID: 19691387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global analysis of energy landscapes for materials modeling: A test case for C60.
    Csányi G; Morgan JWR; Wales DJ
    J Chem Phys; 2023 Sep; 159(10):. PubMed ID: 37698195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-combinatorial energy landscapes for nanoalloy structure optimisation.
    Schebarchov D; Wales DJ
    Phys Chem Chem Phys; 2015 Nov; 17(42):28331-8. PubMed ID: 25970479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global potential energy minima of C60(H2O)n clusters.
    Hernández-Rojas J; Bretón J; Gomez Llorente JM; Wales DJ
    J Phys Chem B; 2006 Jul; 110(27):13357-62. PubMed ID: 16821854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new heuristic method for approximating the number of local minima in partial RNA energy landscapes.
    Albrecht AA; Day L; Abdelhadi Ep Souki O; Steinhöfel K
    Comput Biol Chem; 2016 Feb; 60():43-52. PubMed ID: 26657221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.