BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 30067283)

  • 21. Intrinsic excitability of CA1 pyramidal neurones from the rat dorsal and ventral hippocampus.
    Dougherty KA; Islam T; Johnston D
    J Physiol; 2012 Nov; 590(22):5707-22. PubMed ID: 22988138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.
    Dahmani L; Bohbot VD
    Neurobiol Learn Mem; 2015 Jan; 117():42-50. PubMed ID: 25038426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Close but no cigar: Spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory.
    Kolarik BS; Baer T; Shahlaie K; Yonelinas AP; Ekstrom AD
    Hippocampus; 2018 Jan; 28(1):31-41. PubMed ID: 28888032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optogenetic suppression of the nucleus reuniens selectively impairs encoding during spatial working memory.
    Maisson DJ; Gemzik ZM; Griffin AL
    Neurobiol Learn Mem; 2018 Nov; 155():78-85. PubMed ID: 29940254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hippocampal neural activity reflects the economy of choices during goal-directed navigation.
    Tryon VL; Penner MR; Heide SW; King HO; Larkin J; Mizumori SJY
    Hippocampus; 2017 Jul; 27(7):743-758. PubMed ID: 28241404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opposing effects of cortisol on learning and memory in children using spatial versus response-dependent navigation strategies.
    Blanchette CA; Kurdi V; Fouquet C; Schachar R; Boivin M; Hastings P; Robaey P; West GL; Bohbot VD
    Neurobiol Learn Mem; 2020 Mar; 169():107172. PubMed ID: 31978550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making.
    Schmidt B; Hinman JR; Jacobson TK; Szkudlarek E; Argraves M; Escabí MA; Markus EJ
    J Neurosci; 2013 Apr; 33(14):6212-24. PubMed ID: 23554502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dorsal hippocampus and medial prefrontal cortex each contribute to the retrieval of a recent spatial memory in rats.
    Cholvin T; Loureiro M; Cassel R; Cosquer B; Herbeaux K; de Vasconcelos AP; Cassel JC
    Brain Struct Funct; 2016 Jan; 221(1):91-102. PubMed ID: 25260556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dorsal hippocampus not always necessary in a radial arm maze delayed win-shift task.
    Layfield D; Sidell N; Abdullahi A; Newman EL
    Hippocampus; 2020 Feb; 30(2):121-129. PubMed ID: 31453652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rats with ventral hippocampal damage are impaired at various forms of learning including conditioned inhibition, spatial navigation, and discriminative fear conditioning to similar contexts.
    McDonald RJ; Balog RJ; Lee JQ; Stuart EE; Carrels BB; Hong NS
    Behav Brain Res; 2018 Oct; 351():138-151. PubMed ID: 29883593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impaired recognition of the goal location during spatial navigation in rats with hippocampal lesions.
    Hollup SA; Kjelstrup KG; Hoff J; Moser MB; Moser EI
    J Neurosci; 2001 Jun; 21(12):4505-13. PubMed ID: 11404438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The expression of allocentric object-place recognition memory during development.
    Contreras MP; Born J; Inostroza M
    Behav Brain Res; 2019 Oct; 372():112013. PubMed ID: 31173799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential role of the dorsal hippocampus, ventro-intermediate hippocampus, and medial prefrontal cortex in updating the value of a spatial goal.
    De Saint Blanquat P; Hok V; Save E; Poucet B; Chaillan FA
    Hippocampus; 2013 May; 23(5):342-51. PubMed ID: 23460312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.
    Sato M; Kawano M; Mizuta K; Islam T; Lee MG; Hayashi Y
    eNeuro; 2017; 4(3):. PubMed ID: 28484738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inactivation of nucleus reuniens impairs spatial working memory and behavioral flexibility in the rat.
    Viena TD; Linley SB; Vertes RP
    Hippocampus; 2018 Apr; 28(4):297-311. PubMed ID: 29357198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of a conditioned place preference or spatial navigation task following muscimol-induced inactivations of the amygdala or dorsal hippocampus: A double dissociation in the retrograde direction.
    McDonald RJ; Yim TT; Lehmann H; Sparks FT; Zelinski EL; Sutherland RJ; Hong NS
    Brain Res Bull; 2010 Aug; 83(1-2):29-37. PubMed ID: 20542095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coordinated prefrontal-hippocampal activity and navigation strategy-related prefrontal firing during spatial memory formation.
    Negrón-Oyarzo I; Espinosa N; Aguilar-Rivera M; Fuenzalida M; Aboitiz F; Fuentealba P
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):7123-7128. PubMed ID: 29915053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Canonical goal-selective representations are absent from prefrontal cortex in a spatial working memory task requiring behavioral flexibility.
    Böhm C; Lee AK
    Elife; 2020 Dec; 9():. PubMed ID: 33357380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of the hippocampus in the retrieval of a spatial location.
    Kirwan CB; Gilbert PE; Kesner RP
    Neurobiol Learn Mem; 2005 Jan; 83(1):65-71. PubMed ID: 15607690
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.