These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30067348)

  • 1. Supramolecular Hemoprotein Assembly with a Periodic Structure Showing Heme-Heme Exciton Coupling.
    Oohora K; Fujimaki N; Kajihara R; Watanabe H; Uchihashi T; Hayashi T
    J Am Chem Soc; 2018 Aug; 140(32):10145-10148. PubMed ID: 30067348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Supramolecular Assembly of Hemoproteins Formed in a Star-Shaped Structure via Heme-Heme Pocket Interactions.
    Soon JW; Oohora K; Hirayama S; Hayashi T
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of one- and two-dimensional hemoprotein systems by polymerization through heme-heme pocket interactions.
    Kitagishi H; Kakikura Y; Yamaguchi H; Oohora K; Harada A; Hayashi T
    Angew Chem Int Ed Engl; 2009; 48(7):1271-4. PubMed ID: 19053119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A ring-shaped hemoprotein trimer thermodynamically controlled by the supramolecular heme-heme pocket interaction.
    Oohora K; Kajihara R; Fujimaki N; Uchihashi T; Hayashi T
    Chem Commun (Camb); 2019 Jan; 55(11):1544-1547. PubMed ID: 30565588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamically controlled supramolecular polymerization of cytochrome b 562.
    Kitagishi H; Oohora K; Hayashi T
    Biopolymers; 2009 Mar; 91(3):194-200. PubMed ID: 19003894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular hemoprotein linear assembly by successive interprotein heme-heme pocket interactions.
    Kitagishi H; Oohora K; Yamaguchi H; Sato H; Matsuo T; Harada A; Hayashi T
    J Am Chem Soc; 2007 Aug; 129(34):10326-7. PubMed ID: 17676740
    [No Abstract]   [Full Text] [Related]  

  • 7. Fibrous supramolecular hemoprotein assemblies connected with synthetic heme dimer and apohemoprotein dimer.
    Onoda A; Takahashi A; Oohora K; Onuma Y; Hayashi T
    Chem Biodivers; 2012 Sep; 9(9):1684-92. PubMed ID: 22976961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular assembling systems formed by heme-heme pocket interactions in hemoproteins.
    Oohora K; Onoda A; Hayashi T
    Chem Commun (Camb); 2012 Dec; 48(96):11714-26. PubMed ID: 23079761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A supramolecular assembly based on an engineered hemoprotein exhibiting a thermal stimulus-driven conversion to a new distinct supramolecular structure.
    Oohora K; Onuma Y; Tanaka Y; Onoda A; Hayashi T
    Chem Commun (Camb); 2017 Jun; 53(51):6879-6882. PubMed ID: 28604909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced electron transfer within supramolecular hemoprotein co-assemblies and heterodimers containing Fe and Zn porphyrins.
    Kajihara R; Oohora K; Hayashi T
    J Inorg Biochem; 2019 Apr; 193():42-51. PubMed ID: 30669065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoprotein-based supramolecular assembling systems.
    Oohora K; Hayashi T
    Curr Opin Chem Biol; 2014 Apr; 19():154-61. PubMed ID: 24658057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of cytochrome b562 to c-type cytochromes.
    Barker PD; Nerou EP; Freund SM; Fearnley IM
    Biochemistry; 1995 Nov; 34(46):15191-203. PubMed ID: 7578134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Cage-Like Micellar Assemblies of Engineered Hemoproteins.
    Oohora K; Hayashi T
    Methods Mol Biol; 2023; 2671():95-108. PubMed ID: 37308640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoresponsive Micellar Assembly Constructed from a Hexameric Hemoprotein Modified with Poly(
    Hirayama S; Oohora K; Uchihashi T; Hayashi T
    J Am Chem Soc; 2020 Jan; 142(4):1822-1831. PubMed ID: 31904965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic and aromatic interaction-directed supramolecular self-assembly of a designed Fmoc-tripeptide into helical nanoribbons.
    Xie Y; Wang X; Huang R; Qi W; Wang Y; Su R; He Z
    Langmuir; 2015 Mar; 31(9):2885-94. PubMed ID: 25694059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Resolution Insights into the Stepwise Self-Assembly of Nanofiber from Bioactive Peptides.
    Sun F; Chen L; Ding X; Xu L; Zhou X; Wei P; Liang JF; Luo SZ
    J Phys Chem B; 2017 Aug; 121(31):7421-7430. PubMed ID: 28719744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions.
    Barker PD; Freund SM
    Biochemistry; 1996 Oct; 35(42):13627-35. PubMed ID: 8885842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular hemoprotein-gold nanoparticle conjugates.
    Onoda A; Ueya Y; Sakamoto T; Uematsu T; Hayashi T
    Chem Commun (Camb); 2010 Dec; 46(48):9107-9. PubMed ID: 21042600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of helical J-aggregates self-assembled from a thymidylic acid appended anthracene dye and DNA as a template.
    Iwaura R; Ohnishi-Kameyama M; Iizawa T
    Chemistry; 2009; 15(15):3729-35. PubMed ID: 19206120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical insights into aggregation-induced helicity modulation of a perylene bisimide derivative.
    Liang L; Li X
    J Mol Model; 2018 Feb; 24(3):51. PubMed ID: 29435668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.