These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30067349)

  • 1. Highly Tunable and Facile Synthesis of Uniform Carbon Flower Particles.
    Chen S; Koshy DM; Tsao Y; Pfattner R; Yan X; Feng D; Bao Z
    J Am Chem Soc; 2018 Aug; 140(32):10297-10304. PubMed ID: 30067349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO
    Bing X; Wei Y; Wang M; Xu S; Long D; Wang J; Qiao W; Ling L
    J Colloid Interface Sci; 2017 Feb; 488():207-217. PubMed ID: 27835813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications.
    Fang B; Kim JH; Kim MS; Yu JS
    Acc Chem Res; 2013 Jul; 46(7):1397-406. PubMed ID: 23270494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.
    Zhao F; Shi Y; Pan L; Yu G
    Acc Chem Res; 2017 Jul; 50(7):1734-1743. PubMed ID: 28649845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-Blooming: Hierarchically Porous Nitrogen-Doped Carbon Flowers Derived from Metal-Organic Mesocrystals.
    Hwang J; Walczak R; Oschatz M; Tarakina NV; Schmidt BVKJ
    Small; 2019 Sep; 15(37):e1901986. PubMed ID: 31264774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation Mechanism of Flower-like Polyacrylonitrile Particles.
    Gong H; Ilavsky J; Kuzmenko I; Chen S; Yan H; Cooper CB; Chen G; Chen Y; Chiong JA; Jiang Y; Lai JC; Zheng Y; Stone KH; Huelsenbeck L; Giri G; Tok JB; Bao Z
    J Am Chem Soc; 2022 Sep; 144(38):17576-17587. PubMed ID: 36102706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies for single-particle surface-enhanced Raman scattering.
    Song CY; Zhou N; Yang BY; Yang YJ; Wang LH
    Nanoscale; 2015 Oct; 7(40):17004-11. PubMed ID: 26416701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable Synthesis of Uniform Nanosized Microporous Carbon Particles from Rigid Polymers for Rapid Ion and Molecule Adsorption.
    Ji F; Shi Y; Li M; Jiang S; Chen G; Liu F; Chen Z
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25429-25437. PubMed ID: 30028119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hollow-structured conjugated porous polymer derived Iron/Nitrogen-codoped hierarchical porous carbons as highly efficient electrocatalysts.
    Zhang W; Cui T; Yang L; Zhang C; Cai M; Sun S; Yao Y; Zhuang X; Zhang F
    J Colloid Interface Sci; 2017 Jul; 497():108-116. PubMed ID: 28279867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control Synthesis of Tubular Hyper-Cross-Linked Polymers for Highly Porous Carbon Nanotubes.
    Wang X; Mu P; Zhang C; Chen Y; Zeng J; Wang F; Jiang JX
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20779-20786. PubMed ID: 28570044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.
    Salunkhe RR; Kaneti YV; Kim J; Kim JH; Yamauchi Y
    Acc Chem Res; 2016 Dec; 49(12):2796-2806. PubMed ID: 27993000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application.
    Chen Z; Peng X; Zhang X; Jing S; Zhong L; Sun R
    Carbohydr Polym; 2017 Aug; 170():107-116. PubMed ID: 28521975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Functional Carbons and Their Hybrid Nanoarchitectures towards Supercapacitor Applications.
    Young C; Park T; Yi JW; Kim J; Hossain MSA; Kaneti YV; Yamauchi Y
    ChemSusChem; 2018 Oct; 11(20):3546-3558. PubMed ID: 30156750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured porous carbons derived from nitrogen-doped graphene nanoribbon aerogels for lithium-sulfur batteries.
    Zhou HY; Sui ZY; Liu S; Wang HY; Han BH
    J Colloid Interface Sci; 2019 Apr; 541():204-212. PubMed ID: 30690264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniform Microparticles with Controllable Highly Interconnected Hierarchical Porous Structures.
    Zhang MJ; Wang W; Yang XL; Ma B; Liu YM; Xie R; Ju XJ; Liu Z; Chu LY
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13758-67. PubMed ID: 25923421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Nitrogen-Doped Hierarchical Porous Carbon as an Electrode for High-Performance Supercapacitors.
    Tang J; Wang T; Salunkhe RR; Alshehri SM; Malgras V; Yamauchi Y
    Chemistry; 2015 Nov; 21(48):17293-8. PubMed ID: 26463752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Hybrids Integrated by Dual Polypyrrole-Based Porous Carbons for Enhanced Capacitive Performance.
    Li Z; Chen N; Mi H; Ma J; Xie Y; Qiu J
    Chemistry; 2017 Sep; 23(54):13474-13481. PubMed ID: 28730675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple method to construct three-dimensional porous carbon for electrochemical energy storage.
    Wei H; Liao K; Shi P; Fan J; Xu Q; Min Y
    Nanoscale; 2018 Aug; 10(33):15842-15853. PubMed ID: 30105320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. POROUS MATERIALS. Transient laser heating induced hierarchical porous structures from block copolymer-directed self-assembly.
    Tan KW; Jung B; Werner JG; Rhoades ER; Thompson MO; Wiesner U
    Science; 2015 Jul; 349(6243):54-8. PubMed ID: 26138971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polyacrylonitrile copolymer-silica template for three-dimensional hierarchical porous carbon as a Pt catalyst support for the oxygen reduction reaction.
    Liu M; Li J; Cai C; Zhou Z; Ling Y; Liu R
    Dalton Trans; 2017 Aug; 46(30):9912-9917. PubMed ID: 28722733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.