BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 3006750)

  • 1. Temperature dependence of the reduction potential of CuA in carbon monoxide inhibited cytochrome c oxidase.
    Wang H; Blair DF; Ellis WR; Gray HB; Chan SI
    Biochemistry; 1986 Jan; 25(1):167-71. PubMed ID: 3006750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroelectrochemical study of the cytochrome a site in carbon monoxide inhibited cytochrome c oxidase.
    Ellis WR; Wang H; Blair DF; Gray HB; Chan SI
    Biochemistry; 1986 Jan; 25(1):161-7. PubMed ID: 3006749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions.
    Blair DF; Ellis WR; Wang H; Gray HB; Chan SI
    J Biol Chem; 1986 Sep; 261(25):11524-37. PubMed ID: 3017934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier-transform infrared study of cyanide binding to the Fea3-CuB binuclear site of bovine heart cytochrome c oxidase: implication of the redox-linked conformational change at the binuclear site.
    Tsubaki M
    Biochemistry; 1993 Jan; 32(1):164-73. PubMed ID: 8380331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria.
    Morgan JE; Wikström M
    Biochemistry; 1991 Jan; 30(4):948-58. PubMed ID: 1846562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroelectrochemical investigations of stoichiometry and oxidation-reduction potentials of cytochrome c oxidase components in the presence of carbon monoxide: the "invisible" copper.
    Anderson JL; Kuwana T; Hartzell CR
    Biochemistry; 1976 Aug; 15(17):3847-55. PubMed ID: 182219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modification of the CuA center in cytochrome c oxidase by sodium p-(hydroxymercuri)benzoate.
    Gelles J; Chan SI
    Biochemistry; 1985 Jul; 24(15):3963-72. PubMed ID: 2996587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in cytochrome c oxidase. Studies with the carbon monoxide inhibited enzyme.
    Capitanio N; Capitanio G; Minuto M; De Nitto E; Palese LL; Nicholls P; Papa S
    Biochemistry; 2000 May; 39(21):6373-9. PubMed ID: 10828951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The location of CuA in mammalian cytochrome c oxidase.
    Rich PR; West IC; Mitchell P
    FEBS Lett; 1988 Jun; 233(1):25-30. PubMed ID: 2454843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing heart cytochrome c oxidase structure and function by infrared spectroscopy.
    Caughey WS; Dong A; Sampath V; Yoshikawa S; Zhao XJ
    J Bioenerg Biomembr; 1993 Apr; 25(2):81-91. PubMed ID: 8389753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular electron transfer in cytochrome c oxidase: a cascade of equilibria.
    Verkhovsky MI; Morgan JE; Wikström M
    Biochemistry; 1992 Dec; 31(47):11860-3. PubMed ID: 1332775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome oxidase from Pseudomonas aeruginosa. I. Reaction with copper protein.
    Wharton DC; Gudat JC; Gibson QH
    Biochim Biophys Acta; 1973 Apr; 292(3):611-20. PubMed ID: 4350258
    [No Abstract]   [Full Text] [Related]  

  • 13. Transformation of the CuA redox site in cytochrome c oxidase into a mononuclear copper center.
    Zickermann V; Wittershagen A; Kolbesen BO; Ludwig B
    Biochemistry; 1997 Mar; 36(11):3232-6. PubMed ID: 9116000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods.
    Dodson ED; Zhao XJ; Caughey WS; Elliott CM
    Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distance between the visible copper and cytochrome a in bovine heart cytochrome oxidase.
    Goodman G; Leigh JS
    Biochemistry; 1985 Apr; 24(9):2310-7. PubMed ID: 2986690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron redistribution in mixed valence cytochrome oxidase following photolysis of carboxy-oxidase.
    Harmon HJ
    J Bioenerg Biomembr; 1988 Dec; 20(6):735-48. PubMed ID: 2854130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy.
    Cooper CE; Springett R
    Philos Trans R Soc Lond B Biol Sci; 1997 Jun; 352(1354):669-76. PubMed ID: 9232854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper electron-nuclear double resonance of cytochrome c oxidase.
    Hoffman BM; Roberts JE; Swanson M; Speck SH; Margoliash E
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1452-6. PubMed ID: 6246493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic interactions of CO with a3Fe and CuB in cytochrome c oxidase in beef heart mitochondria studied by Fourier transform infrared spectroscopy at low temperatures.
    Fiamingo FG; Altschuld RA; Moh PP; Alben JO
    J Biol Chem; 1982 Feb; 257(4):1639-50. PubMed ID: 6276395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of the CuA site affects the proton pumping activity of cytochrome c oxidase.
    Nilsson T; Gelles J; Li PM; Chan SI
    Biochemistry; 1988 Jan; 27(1):296-301. PubMed ID: 2831955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.