These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30067645)

  • 1. Experimental demonstration of an ultra-broadband subwavelength resolution probe from microwave to terahertz regime.
    Huang TJ; Tang HH; Yin LZ; Liu JY; Tan Y; Liu PK
    Opt Lett; 2018 Aug; 43(15):3646-3649. PubMed ID: 30067645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving time and space resolution in electro-optic sampling for near-field terahertz imaging.
    Blanchard F; Tanaka K
    Opt Lett; 2016 Oct; 41(20):4645-4648. PubMed ID: 28005857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method.
    Dupuis A; Allard JF; Morris D; Stoeffler K; Dubois C; Skorobogatiy M
    Opt Express; 2009 May; 17(10):8012-28. PubMed ID: 19434133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas.
    Bitzer A; Ortner A; Walther M
    Appl Opt; 2010 Jul; 49(19):E1-6. PubMed ID: 20648112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber.
    Xie Y; Fan X; Chen Y; Wilson JD; Simons RN; Xiao JQ
    Sci Rep; 2017 Jan; 7():40490. PubMed ID: 28071734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance.
    Rozé M; Ung B; Mazhorova A; Walther M; Skorobogatiy M
    Opt Express; 2011 May; 19(10):9127-38. PubMed ID: 21643167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metamaterial-based gradient index lens with strong focusing in the THz frequency range.
    Neu J; Krolla B; Paul O; Reinhard B; Beigang R; Rahm M
    Opt Express; 2010 Dec; 18(26):27748-57. PubMed ID: 21197049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-field terahertz imaging using sub-wavelength apertures without cutoff.
    Liu S; Mitrofanov O; Nahata A
    Opt Express; 2016 Feb; 24(3):2728-36. PubMed ID: 26906843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terahertz transmission properties of an individual slit in a thin metallic plate.
    Lee JW; Park TH; Nordlander P; Mittleman DM
    Opt Express; 2009 Jul; 17(15):12660-7. PubMed ID: 19654670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant terahertz probes for near-field scattering microscopy.
    Siday T; Natrella M; Wu J; Liu H; Mitrofanov O
    Opt Express; 2017 Oct; 25(22):27874-27885. PubMed ID: 29092256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy.
    Moon K; Park H; Kim J; Do Y; Lee S; Lee G; Kang H; Han H
    Nano Lett; 2015 Jan; 15(1):549-52. PubMed ID: 25436437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures.
    Hu MZ; Zhang HC; Yin JY; Ding Z; Liu JF; Tang WX; Cui TJ
    Sci Rep; 2016 Nov; 6():37605. PubMed ID: 27883028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS.
    Liang Y; Yu H; Wen J; Apriyana AA; Li N; Luo Y; Sun L
    Sci Rep; 2016 Jul; 6():30063. PubMed ID: 27444782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz far-field superresolution imaging through spoof surface plasmons illumination.
    Tang HH; Liu PK
    Opt Lett; 2015 Dec; 40(24):5822-5. PubMed ID: 26670521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoslit cavity plasmonic modes and built-in fields enhance the CW THz radiation in an unbiased antennaless photomixers array.
    Mohammad-Zamani MJ; Neshat M; Moravvej-Farshi MK
    Opt Lett; 2016 Jan; 41(2):420-3. PubMed ID: 26766729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings.
    Zang X; Shi C; Chen L; Cai B; Zhu Y; Zhuang S
    Sci Rep; 2015 Mar; 5():8901. PubMed ID: 25754618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration of broadband terahertz radiation using a periodic array of conically tapered apertures.
    Liu S; Vardeny ZV; Nahata A
    Opt Express; 2013 May; 21(10):12363-72. PubMed ID: 23736454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength corrugated metallic wire with open hollow rings in THz regime.
    Chung IH; Wu JJ; Shen JQ; Huang PJ
    Appl Opt; 2015 Nov; 54(31):9120-6. PubMed ID: 26560563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period.
    Li G; Zhang J
    Sci Rep; 2014 Aug; 4():5914. PubMed ID: 25081812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in Lithium Niobate subwavelength waveguide.
    Yang H; Qi J; Pan C; Lu Y; Wu Q; Yao J; Xu J
    Opt Express; 2017 Jun; 25(13):14766-14773. PubMed ID: 28789060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.