BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30067982)

  • 1. The Tumor Suppressor MIG6 Controls Mitotic Progression and the G2/M DNA Damage Checkpoint by Stabilizing the WEE1 Kinase.
    Sasaki M; Terabayashi T; Weiss SM; Ferby I
    Cell Rep; 2018 Jul; 24(5):1278-1289. PubMed ID: 30067982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type I γ Phosphatidylinositol Phosphate 5-Kinase i5 Controls the Ubiquitination and Degradation of the Tumor Suppressor Mitogen-inducible Gene 6.
    Sun M; Cai J; Anderson RA; Sun Y
    J Biol Chem; 2016 Oct; 291(41):21461-21473. PubMed ID: 27557663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The induction of MIG6 under hypoxic conditions is critical for dormancy in primary cultured lung cancer cells with activating EGFR mutations.
    Endo H; Okami J; Okuyama H; Nishizawa Y; Imamura F; Inoue M
    Oncogene; 2017 May; 36(20):2824-2834. PubMed ID: 27893711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WEE1 kinase limits CDK activities to safeguard DNA replication and mitotic entry.
    Elbæk CR; Petrosius V; Sørensen CS
    Mutat Res; 2020; 819-820():111694. PubMed ID: 32120135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redundant ubiquitin ligase activities regulate wee1 degradation and mitotic entry.
    Smith A; Simanski S; Fallahi M; Ayad NG
    Cell Cycle; 2007 Nov; 6(22):2795-9. PubMed ID: 18032919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Irradiation-induced G2/M checkpoint response requires ERK1/2 activation.
    Yan Y; Black CP; Cowan KH
    Oncogene; 2007 Jul; 26(32):4689-98. PubMed ID: 17297454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis.
    Sgarlata C; Pérez-Martín J
    J Cell Sci; 2005 Aug; 118(Pt 16):3607-22. PubMed ID: 16046476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artemis links ATM to G2/M checkpoint recovery via regulation of Cdk1-cyclin B.
    Geng L; Zhang X; Zheng S; Legerski RJ
    Mol Cell Biol; 2007 Apr; 27(7):2625-35. PubMed ID: 17242184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of MIG6 Accelerates Initiation and Progression of Mutant Epidermal Growth Factor Receptor-Driven Lung Adenocarcinoma.
    Maity TK; Venugopalan A; Linnoila I; Cultraro CM; Giannakou A; Nemati R; Zhang X; Webster JD; Ritt D; Ghosal S; Hoschuetzky H; Simpson RM; Biswas R; Politi K; Morrison DK; Varmus HE; Guha U
    Cancer Discov; 2015 May; 5(5):534-49. PubMed ID: 25735773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two Distinct Cdc2 Pools Regulate Cell Cycle Progression and the DNA Damage Response in the Fission Yeast S.pombe.
    Caspari T; Hilditch V
    PLoS One; 2015; 10(7):e0130748. PubMed ID: 26131711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation.
    O'Connell MJ; Raleigh JM; Verkade HM; Nurse P
    EMBO J; 1997 Feb; 16(3):545-54. PubMed ID: 9034337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tome-1, a trigger of mitotic entry, is degraded during G1 via the APC.
    Ayad NG; Rankin S; Murakami M; Jebanathirajah J; Gygi S; Kirschner MW
    Cell; 2003 Apr; 113(1):101-13. PubMed ID: 12679038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation.
    Jiang H; Wu J; He C; Yang W; Li H
    Cell Res; 2009 Apr; 19(4):458-68. PubMed ID: 19223857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleolar integrity during interphase supports faithful Cdk1 activation and mitotic entry.
    Hayashi Y; Fujimura A; Kato K; Udagawa R; Hirota T; Kimura K
    Sci Adv; 2018 Jun; 4(6):eaap7777. PubMed ID: 29881774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition.
    Kang D; Chen J; Wong J; Fang G
    J Cell Biol; 2002 Jan; 156(2):249-59. PubMed ID: 11807090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential properties of mitosis-associated events following CHK1 and WEE1 inhibitor treatments in human tongue carcinoma cells.
    Nojima H; Homma H; Onozato Y; Kaida A; Harada H; Miura M
    Exp Cell Res; 2020 Jan; 386(2):111720. PubMed ID: 31738907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cdk1-dependent regulation of the mitotic inhibitor Wee1.
    Harvey SL; Charlet A; Haas W; Gygi SP; Kellogg DR
    Cell; 2005 Aug; 122(3):407-20. PubMed ID: 16096060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ability of CK2beta to selectively regulate cellular protein kinases.
    Olsen BB; Guerra B
    Mol Cell Biochem; 2008 Sep; 316(1-2):115-26. PubMed ID: 18560763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of Mig6 negatively regulates the ubiquitination and degradation of EGFR mutants in lung adenocarcinoma cell lines.
    Boopathy GTK; Lynn JLS; Wee S; Gunaratne J; Hong W
    Cell Signal; 2018 Mar; 43():21-31. PubMed ID: 29196224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative regulation of Wee1 expression and Cdc2 phosphorylation during p53-mediated growth arrest and apoptosis.
    Leach SD; Scatena CD; Keefer CJ; Goodman HA; Song SY; Yang L; Pietenpol JA
    Cancer Res; 1998 Aug; 58(15):3231-6. PubMed ID: 9699647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.