BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 30068175)

  • 1. Lattice theory of competitive binding: Influence of van der Waals interactions on molecular binding and adsorption to a solid substrate from binary liquid mixtures.
    Dudowicz J; Douglas JF; Freed KF
    J Chem Phys; 2018 Jul; 149(4):044704. PubMed ID: 30068175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice theory for binding of linear polymers to a solid substrate from polymer melts. II. Influence of van der Waals interactions and chain semiflexibility on molecular binding and adsorption.
    Dudowicz J; Douglas JF; Freed KF
    J Chem Phys; 2019 Sep; 151(12):124709. PubMed ID: 31575163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice theory for binding of linear polymers to a solid substrate from polymer melts: I. Influence of chain connectivity on molecular binding and adsorption.
    Dudowicz J; Douglas JF; Freed KF
    J Chem Phys; 2019 Sep; 151(12):124706. PubMed ID: 31575160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.
    Rosenholm JB
    Adv Colloid Interface Sci; 2018 Mar; 253():66-116. PubMed ID: 29422417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of van der Waals interaction in the tilted binding of amine molecules to the Au(111) surface.
    Le D; Aminpour M; Kiejna A; Rahman TS
    J Phys Condens Matter; 2012 Jun; 24(22):222001. PubMed ID: 22534196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Van der Waals forces in free and wetting liquid films.
    Emelyanenko KA; Emelyanenko AM; Boinovich LB
    Adv Colloid Interface Sci; 2019 Jul; 269():357-369. PubMed ID: 31129337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice cluster theory of associating polymers. II. Enthalpy and entropy of self-assembly and Flory-Huggins interaction parameter χ for solutions of telechelic molecules.
    Dudowicz J; Freed KF; Douglas JF
    J Chem Phys; 2012 Feb; 136(6):064903. PubMed ID: 22360220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS(2).
    Moses PG; Mortensen JJ; Lundqvist BI; Norskov JK
    J Chem Phys; 2009 Mar; 130(10):104709. PubMed ID: 19292551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a Universal Gel Model with Volume Phase Transition.
    Manning GS
    Gels; 2020 Feb; 6(1):. PubMed ID: 32120904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of van der Waals bonding and interactions in metal organic framework materials.
    Zuluaga S; Canepa P; Tan K; Chabal YJ; Thonhauser T
    J Phys Condens Matter; 2014 Apr; 26(13):133002. PubMed ID: 24613989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen bonding versus van der Waals interactions: competitive influence of noncovalent interactions on 2D self-assembly at the liquid-solid interface.
    Mali KS; Lava K; Binnemans K; De Feyter S
    Chemistry; 2010 Dec; 16(48):14447-58. PubMed ID: 21064044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate van der Waals force field for gas adsorption in porous materials.
    Sun L; Yang L; Zhang YD; Shi Q; Lu RF; Deng WQ
    J Comput Chem; 2017 Sep; 38(23):1991-1999. PubMed ID: 28558151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized van der Waals Theory of Interfaces in Simple Fluid Mixtures.
    Greberg H; Paolini GV; Satherley J; Penfold R; Nordholm S
    J Colloid Interface Sci; 2001 Mar; 235(2):334-343. PubMed ID: 11254311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative interplay of van der Waals forces and quantum nuclear effects on adsorption: H at graphene and at coronene.
    Davidson ER; Klimeš J; Alfè D; Michaelides A
    ACS Nano; 2014 Oct; 8(10):9905-13. PubMed ID: 25300825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces.
    Wang J; Nguyen AV
    Adv Colloid Interface Sci; 2017 Dec; 250():54-63. PubMed ID: 29100682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THz spectroscopy of weakly bound cluster molecules in solid para-hydrogen: a sensitive probe of van der Waals interactions.
    Mihrin D; Wugt Larsen R
    Phys Chem Chem Phys; 2018 Dec; 21(1):349-358. PubMed ID: 30525164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Considerations about the Adsorption of Organic Molecules from the Gas Phase to Surfaces: Implications for Inverse Gas Chromatography and the Prediction of Adsorption Coefficients.
    Goss KU
    J Colloid Interface Sci; 1997 Jun; 190(1):241-9. PubMed ID: 9241161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.