These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30068200)

  • 1. Communication: Accurate description of interaction energies and three-body effects in weakly bound molecular complexes by PBE-QIDH models.
    Pérez-Jiménez AJ; Brémond E; Adamo C; Sancho-García JC
    J Chem Phys; 2018 Jul; 149(4):041101. PubMed ID: 30068200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partnering dispersion corrections with modern parameter-free double-hybrid density functionals.
    Sancho-García JC; Brémond É; Savarese M; Pérez-Jiménez AJ; Adamo C
    Phys Chem Chem Phys; 2017 May; 19(21):13481-13487. PubMed ID: 28275771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs.
    Brandenburg JG; Maas T; Grimme S
    J Chem Phys; 2015 Mar; 142(12):124104. PubMed ID: 25833562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions.
    Dohm S; Hansen A; Steinmetz M; Grimme S; Checinski MP
    J Chem Theory Comput; 2018 May; 14(5):2596-2608. PubMed ID: 29565586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular binding thermodynamics by dispersion-corrected density functional theory.
    Grimme S
    Chemistry; 2012 Aug; 18(32):9955-64. PubMed ID: 22782805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Energetics of Supramolecular Systems Using the XDM Dispersion Model.
    Otero-de-la-Roza A; Johnson ER
    J Chem Theory Comput; 2015 Sep; 11(9):4033-40. PubMed ID: 26575899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of density functionals and paucity of non-covalent interactions in aminoylyne complexes of molybdenum and tungsten [(η(5)-C5H5)(CO)2M≡EN(SiMe3)(R)] (E = Si, Ge, Sn, Pb): a dispersion-corrected DFT study.
    Pandey KK; Patidar P; Bariya PK; Patidar SK; Vishwakarma R
    Dalton Trans; 2014 Jul; 43(26):9955-67. PubMed ID: 24850167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the role of the underlying orbital-dependence of PBE0-DH and PBE-QIDH double-hybrid density functionals.
    Sancho-García JC; Pérez-Jiménez ÁJ; Savarese M; Brémond É; Adamo C
    J Comput Chem; 2017 Jun; 38(17):1509-1514. PubMed ID: 28394021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-ligand interaction energies with dispersion corrected density functional theory and high-level wave function based methods.
    Antony J; Grimme S; Liakos DG; Neese F
    J Phys Chem A; 2011 Oct; 115(41):11210-20. PubMed ID: 21842894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes.
    Risthaus T; Grimme S
    J Chem Theory Comput; 2013 Mar; 9(3):1580-91. PubMed ID: 26587619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Molecular Crystal Lattice Energies from a Fragment QM/MM Approach with On-the-Fly Ab Initio Force Field Parametrization.
    Wen S; Beran GJ
    J Chem Theory Comput; 2011 Nov; 7(11):3733-42. PubMed ID: 26598268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communication: resolving the three-body contribution to the lattice energy of crystalline benzene: benchmark results from coupled-cluster theory.
    Kennedy MR; McDonald AR; DePrince AE; Marshall MS; Podeszwa R; Sherrill CD
    J Chem Phys; 2014 Mar; 140(12):121104. PubMed ID: 24697416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmark interaction energies for biologically relevant noncovalent complexes containing divalent sulfur.
    Mintz BJ; Parks JM
    J Phys Chem A; 2012 Jan; 116(3):1086-92. PubMed ID: 22181988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: double-hybrid functionals from adiabatic-connection: the QIDH model.
    Brémond É; Sancho-García JC; Pérez-Jiménez ÁJ; Adamo C
    J Chem Phys; 2014 Jul; 141(3):031101. PubMed ID: 25053294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory.
    Huang Y; Beran GJ
    J Chem Phys; 2015 Jul; 143(4):044113. PubMed ID: 26233113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The S66x8 benchmark for noncovalent interactions revisited: explicitly correlated ab initio methods and density functional theory.
    Brauer B; Kesharwani MK; Kozuch S; Martin JM
    Phys Chem Chem Phys; 2016 Aug; 18(31):20905-25. PubMed ID: 26950084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The diene isomerization energies dataset: A difficult test for double-hybrid density functionals?
    Wykes M; Pérez-Jiménez AJ; Adamo C; Sancho-García JC
    J Chem Phys; 2015 Jun; 142(22):224105. PubMed ID: 26071699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density Functional and Semiempirical Molecular Orbital Methods Including Dispersion Corrections for the Accurate Description of Noncovalent Interactions Involving Sulfur-Containing Molecules.
    Morgado CA; McNamara JP; Hillier IH; Burton NA; Vincent MA
    J Chem Theory Comput; 2007 Sep; 3(5):1656-64. PubMed ID: 26627611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the performance of dispersion-corrected density functional theory for weak hydrogen bonds.
    Hujo W; Grimme S
    Phys Chem Chem Phys; 2011 Aug; 13(31):13942-50. PubMed ID: 21594296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.