These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Bridging classical nucleation theory and molecular dynamics simulation for homogeneous ice nucleation. Lin M; Xiong Z; Cao H J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39206829 [TBL] [Abstract][Full Text] [Related]
5. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters. Ickes L; Welti A; Hoose C; Lohmann U Phys Chem Chem Phys; 2015 Feb; 17(8):5514-37. PubMed ID: 25627933 [TBL] [Abstract][Full Text] [Related]
6. Recent developments in the kinetic theory of nucleation. Ruckenstein E; Djikaev YS Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628 [TBL] [Abstract][Full Text] [Related]
7. Large scale molecular dynamics simulations of homogeneous nucleation. Diemand J; Angélil R; Tanaka KK; Tanaka H J Chem Phys; 2013 Aug; 139(7):074309. PubMed ID: 23968094 [TBL] [Abstract][Full Text] [Related]
8. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots. Diemand J; Angélil R; Tanaka KK; Tanaka H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803 [TBL] [Abstract][Full Text] [Related]
9. Nucleation Rate of N Song J; Berry JD; Goudeli E J Phys Chem B; 2023 Nov; 127(46):9976-9984. PubMed ID: 37941350 [TBL] [Abstract][Full Text] [Related]
11. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules. Tanaka KK; Kawamura K; Tanaka H; Nakazawa K J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736 [TBL] [Abstract][Full Text] [Related]
12. Homogeneous nucleation of n-nonane and n-propanol mixtures: a comparison of classical nucleation theory and experiments. Gaman AI; Napari I; Winkler PM; Vehkamäki H; Wagner PE; Strey R; Viisanen Y; Kulmala M J Chem Phys; 2005 Dec; 123(24):244502. PubMed ID: 16396544 [TBL] [Abstract][Full Text] [Related]
13. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory. Langenbach K; Heilig M; Horsch M; Hasse H J Chem Phys; 2018 Mar; 148(12):124702. PubMed ID: 29604838 [TBL] [Abstract][Full Text] [Related]
14. Exploring the discrepancies between experiment, theory, and simulation for the homogeneous gas-to-liquid nucleation of 1-pentanol. Nellas RB; Keasler SJ; Siepmann JI; Chen B J Chem Phys; 2010 Apr; 132(16):164517. PubMed ID: 20441298 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics analysis of multiple site growth and coalescence effects on homogeneous and heterogeneous nucleations. Suh D; Yoon W; Shibahara M; Jung S J Chem Phys; 2008 Apr; 128(15):154523. PubMed ID: 18433251 [TBL] [Abstract][Full Text] [Related]
17. Understanding Hygroscopic Nucleation of Sulfate Aerosols: Combination of Molecular Dynamics Simulation with Classical Nucleation Theory. Zhao Z; Kong K; Wang S; Zhou Y; Cheng D; Wang W; Zeng XC; Li H J Phys Chem Lett; 2019 Mar; 10(5):1126-1132. PubMed ID: 30798591 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics simulations of the nucleation of water: determining the sticking probability and formation energy of a cluster. Tanaka KK; Kawano A; Tanaka H J Chem Phys; 2014 Mar; 140(11):114302. PubMed ID: 24655175 [TBL] [Abstract][Full Text] [Related]
19. Homogeneous ice nucleation at moderate supercooling from molecular simulation. Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583 [TBL] [Abstract][Full Text] [Related]
20. Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation. Halonen R; Zapadinsky E; Vehkamäki H J Chem Phys; 2018 Apr; 148(16):164508. PubMed ID: 29716220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]