BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 30068561)

  • 1. Glucose Transporters and Virulence in
    Feng X; Tran KD; Sanchez MA; Al Mezewghi H; Landfear SM
    mSphere; 2018 Aug; 3(4):. PubMed ID: 30068561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic changes in glucose transporter-deficient Leishmania mexicana and parasite virulence.
    Rodríguez-Contreras D; Landfear SM
    J Biol Chem; 2006 Jul; 281(29):20068-76. PubMed ID: 16707495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kharon1 null mutants of Leishmania mexicana are avirulent in mice and exhibit a cytokinesis defect within macrophages.
    Tran KD; Vieira DP; Sanchez MA; Valli J; Gluenz E; Landfear SM
    PLoS One; 2015; 10(8):e0134432. PubMed ID: 26266938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic characterization of a glucose transporter null mutant in Leishmania mexicana.
    Rodriguez-Contreras D; Feng X; Keeney KM; Bouwer HG; Landfear SM
    Mol Biochem Parasitol; 2007 May; 153(1):9-18. PubMed ID: 17306380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification of an alternate transporter gene suppresses the avirulent phenotype of glucose transporter null mutants in Leishmania mexicana.
    Feng X; Rodriguez-Contreras D; Buffalo C; Bouwer HG; Kruvand E; Beverley SM; Landfear SM
    Mol Microbiol; 2009 Jan; 71(2):369-81. PubMed ID: 19017272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation and biological function of a flagellar glucose transporter in Leishmania mexicana: a potential glucose sensor.
    Rodriguez-Contreras D; Aslan H; Feng X; Tran K; Yates PA; Kamhawi S; Landfear SM
    FASEB J; 2015 Jan; 29(1):11-24. PubMed ID: 25300620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels.
    Mittra B; Cortez M; Haydock A; Ramasamy G; Myler PJ; Andrews NW
    J Exp Med; 2013 Feb; 210(2):401-16. PubMed ID: 23382545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic characterization of glucose transporter function in Leishmania mexicana.
    Burchmore RJ; Rodriguez-Contreras D; McBride K; Merkel P; Barrett MP; Modi G; Sacks D; Landfear SM
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3901-6. PubMed ID: 12651954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of the Leishmania amazonensis Ca2+-ATPase gene lmaa1 enhances virulence.
    Rodriguez NM; Docampo R; Lu Hg HG; Scott DA
    Cell Microbiol; 2002 Feb; 4(2):117-26. PubMed ID: 11896767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The iron-dependent mitochondrial superoxide dismutase SODA promotes
    Mittra B; Laranjeira-Silva MF; Miguel DC; Perrone Bezerra de Menezes J; Andrews NW
    J Biol Chem; 2017 Jul; 292(29):12324-12338. PubMed ID: 28550086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts.
    Ishemgulova A; Kraeva N; Hlaváčová J; Zimmer SL; Butenko A; Podešvová L; Leštinová T; Lukeš J; Kostygov A; Votýpka J; Volf P; Yurchenko V
    PLoS Negl Trop Dis; 2017 Jul; 11(7):e0005782. PubMed ID: 28742133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascorbate-Dependent Peroxidase (APX) from Leishmania amazonensis Is a Reactive Oxygen Species-Induced Essential Enzyme That Regulates Virulence.
    Xiang L; Laranjeira-Silva MF; Maeda FY; Hauzel J; Andrews NW; Mittra B
    Infect Immun; 2019 Dec; 87(12):. PubMed ID: 31527128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'Transient' genetic suppression facilitates generation of hexose transporter null mutants in Leishmania mexicana.
    Feng X; Rodriguez-Contreras D; Polley T; Lye LF; Scott D; Burchmore RJ; Beverley SM; Landfear SM
    Mol Microbiol; 2013 Jan; 87(2):412-29. PubMed ID: 23170981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cathepsin B-like cysteine proteinase-deficient mutants of Leishmania mexicana.
    Bart G; Frame MJ; Carter R; Coombs GH; Mottram JC
    Mol Biochem Parasitol; 1997 Sep; 88(1-2):53-61. PubMed ID: 9274867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host.
    Wiese M
    EMBO J; 1998 May; 17(9):2619-28. PubMed ID: 9564044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of the gene for the membrane-bound acid phosphatase of Leishmania mexicana.
    Benzel I; Weise F; Wiese M
    Mol Biochem Parasitol; 2000 Nov; 111(1):77-86. PubMed ID: 11087918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors.
    Mottram JC; Souza AE; Hutchison JE; Carter R; Frame MJ; Coombs GH
    Proc Natl Acad Sci U S A; 1996 Jun; 93(12):6008-13. PubMed ID: 8650210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice.
    Ilg T; Demar M; Harbecke D
    J Biol Chem; 2001 Feb; 276(7):4988-97. PubMed ID: 11071892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LmxPK4, a mitogen-activated protein kinase kinase homologue of Leishmania mexicana with a potential role in parasite differentiation.
    Kuhn D; Wiese M
    Mol Microbiol; 2005 Jun; 56(5):1169-82. PubMed ID: 15882412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amastin Knockdown in Leishmania braziliensis Affects Parasite-Macrophage Interaction and Results in Impaired Viability of Intracellular Amastigotes.
    de Paiva RM; Grazielle-Silva V; Cardoso MS; Nakagaki BN; Mendonça-Neto RP; Canavaci AM; Souza Melo N; Martinelli PM; Fernandes AP; daRocha WD; Teixeira SM
    PLoS Pathog; 2015 Dec; 11(12):e1005296. PubMed ID: 26641088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.