These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30068567)

  • 1. Implications of dimeric activation of PDE6 for rod phototransduction.
    Lamb TD; Heck M; Kraft TW
    Open Biol; 2018 Aug; 8(8):. PubMed ID: 30068567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes.
    Lamb TD; Kraft TW
    Open Biol; 2020 Jan; 10(1):190241. PubMed ID: 31910741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. It takes two transducins to activate the cGMP-phosphodiesterase 6 in retinal rods.
    Qureshi BM; Behrmann E; Schöneberg J; Loerke J; Bürger J; Mielke T; Giesebrecht J; Noé F; Lamb TD; Hofmann KP; Spahn CMT; Heck M
    Open Biol; 2018 Aug; 8(8):. PubMed ID: 30068566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exchange of Cone for Rod Phosphodiesterase 6 Catalytic Subunits in Rod Photoreceptors Mimics in Part Features of Light Adaptation.
    Majumder A; Pahlberg J; Muradov H; Boyd KK; Sampath AP; Artemyev NO
    J Neurosci; 2015 Jun; 35(24):9225-35. PubMed ID: 26085644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The N termini of the inhibitory γ-subunits of phosphodiesterase-6 (PDE6) from rod and cone photoreceptors differentially regulate transducin-mediated PDE6 activation.
    Wang X; Plachetzki DC; Cote RH
    J Biol Chem; 2019 May; 294(21):8351-8360. PubMed ID: 30962282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins of the phototransduction delay as inferred from stochastic and deterministic simulation of the amplification cascade.
    Rotov AY; Astakhova LA; Firsov ML; Govardovskii VI
    Mol Vis; 2017; 23():416-430. PubMed ID: 28744093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones.
    Koshitani Y; Tachibanaki S; Kawamura S
    J Biol Chem; 2014 Jan; 289(5):2651-7. PubMed ID: 24344136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones.
    Cote RH
    Pflugers Arch; 2021 Sep; 473(9):1377-1391. PubMed ID: 33860373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cone phosphodiesterase-6α' restores rod function and confers distinct physiological properties in the rod phosphodiesterase-6β-deficient rd10 mouse.
    Deng WT; Sakurai K; Kolandaivelu S; Kolesnikov AV; Dinculescu A; Li J; Zhu P; Liu X; Pang J; Chiodo VA; Boye SL; Chang B; Ramamurthy V; Kefalov VJ; Hauswirth WW
    J Neurosci; 2013 Jul; 33(29):11745-53. PubMed ID: 23864662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rod phosphodiesterase-6 PDE6A and PDE6B subunits are enzymatically equivalent.
    Muradov H; Boyd KK; Artemyev NO
    J Biol Chem; 2010 Dec; 285(51):39828-34. PubMed ID: 20940301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the ILE86TER mutation in the γ subunit of cGMP phosphodiesterase (PDE6) on rod photoreceptor signaling.
    Tsang SH; Woodruff ML; Lin CS; Jacobson BD; Naumann MC; Hsu CW; Davis RJ; Cilluffo MC; Chen J; Fain GL
    Cell Signal; 2012 Jan; 24(1):181-8. PubMed ID: 21920434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the mechanism by which the retinal G protein transducin activates its biological effector PDE6.
    Aplin C; Cerione RA
    J Biol Chem; 2024 Feb; 300(2):105608. PubMed ID: 38159849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elementary response triggered by transducin in retinal rods.
    Yue WWS; Silverman D; Ren X; Frederiksen R; Sakai K; Yamashita T; Shichida Y; Cornwall MC; Chen J; Yau KW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5144-5153. PubMed ID: 30796193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreceptor physiology and evolution: cellular and molecular basis of rod and cone phototransduction.
    Lamb TD
    J Physiol; 2022 Nov; 600(21):4585-4601. PubMed ID: 35412676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of recoverin in rod photoreceptor light adaptation.
    Morshedian A; Woodruff ML; Fain GL
    J Physiol; 2018 Apr; 596(8):1513-1526. PubMed ID: 29435986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical analysis of phototransduction reaction parameters in rods and cones.
    Takeda Y; Sato K; Hosoki Y; Tachibanaki S; Koike C; Amano A
    Sci Rep; 2022 Nov; 12(1):19529. PubMed ID: 36376413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low activation and fast inactivation of transducin in carp cones.
    Tachibanaki S; Yonetsu S; Fukaya S; Koshitani Y; Kawamura S
    J Biol Chem; 2012 Nov; 287(49):41186-94. PubMed ID: 23045532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins.
    Zhang X; Wensel TG; Yuan C
    Photochem Photobiol; 2006; 82(6):1452-60. PubMed ID: 16553462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New focus on regulation of the rod photoreceptor phosphodiesterase.
    Gulati S; Palczewski K
    Curr Opin Struct Biol; 2021 Aug; 69():99-107. PubMed ID: 33945959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.