BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3006934)

  • 1. Formation of iminoxyl and nitroxide free radicals from nitrosonaphthols: an electron spin resonance study.
    Fischer V; Mason RP
    Chem Biol Interact; 1986 Feb; 57(2):129-42. PubMed ID: 3006934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosine iminoxyl radical formation from tyrosyl radical/nitric oxide and nitrosotyrosine.
    Sturgeon BE; Glover RE; Chen YR; Burka LT; Mason RP
    J Biol Chem; 2001 Dec; 276(49):45516-21. PubMed ID: 11551949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen atom abstraction of 3,5-disubstituted analogues of paracetamol by horseradish peroxidase and cytochrome P450.
    Bessems JG; de Groot MJ; Baede EJ; te Koppele JM; Vermeulen NP
    Xenobiotica; 1998 Sep; 28(9):855-75. PubMed ID: 9764928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox cycle of stable mixed nitroxides formed from carcinogenic aromatic amines.
    Stier A; Clauss R; Lücke A; Reitz I
    Xenobiotica; 1980; 10(7-8):661-73. PubMed ID: 6255685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radical formation in the oxidation of malondialdehyde and acetylacetone by peroxidase enzymes.
    Mottley C; Robinson RE; Mason RP
    Arch Biochem Biophys; 1991 Aug; 289(1):153-60. PubMed ID: 1654844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prostaglandin H synthase-catalyzed oxidation of all-trans- and 13-cis-retinoic acid to carbon-centered and peroxyl radical intermediates.
    Freyaldenhoven MA; Lloyd RV; Samokyszyn VM
    Chem Res Toxicol; 1996 Jun; 9(4):677-81. PubMed ID: 8831809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide trapping of the tyrosyl radical-chemistry and biochemistry.
    Gunther MR; Sturgeon BE; Mason RP
    Toxicology; 2002 Aug; 177(1):1-9. PubMed ID: 12126791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Distribution of nitroxide radical compounds and its reducing activity in liver, spleen and kidney of rat by electron spin resonance (ESR) spectroscopy].
    Masumizu T; Kohno M; Nakata M
    Yakugaku Zasshi; 1999 Dec; 119(12):956-63. PubMed ID: 10630101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electron spin resonance study of the novel radical cation produced during the horseradish peroxidase-catalyzed oxidation of tetramethylhydrazine.
    Kalyanaraman B; Mason RP; Sivarajah K
    Biochem Biophys Res Commun; 1982 Mar; 105(1):217-24. PubMed ID: 6284143
    [No Abstract]   [Full Text] [Related]  

  • 10. Electron spin resonance studies and theoretical quantum calculations of free radicals generated from anthracenetrione by electrochemical and microsomal reduction.
    Olea-Azar C; Mendizábal F; Alarcón J; Briones R; Cassels BK; Delgado-Castro T; Araya-Maturana R
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Aug; 57(9):1889-95. PubMed ID: 11506041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pKa and pH dependence of the formation of nitroxide radicals from some drug substances with an aliphatic secondary amino group by oxidation with hydrogen peroxide. An Electron Spin Resonance (ESR) Study.
    Lagercrantz C
    Acta Chem Scand B; 1987 Aug; 41(7):526-35. PubMed ID: 2829479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The one-electron oxidation of porphyrins to porphyrin pi-cation radicals by peroxidases: an electron spin resonance investigation.
    Morehouse KM; Sipe HJ; Mason RP
    Arch Biochem Biophys; 1989 Aug; 273(1):158-64. PubMed ID: 2547338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct ESR detection of a free radical intermediate during the peroxidase-catalyzed oxidation of the antimalarial drug primaquine.
    Augusto O; Schreiber J; Mason RP
    Biochem Pharmacol; 1988 Jul; 37(14):2791-7. PubMed ID: 2840077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electron spin resonance detection of free radical intermediates during the peroxidase catalyzed oxidation of phenacetin metabolites.
    Fischer V; Harman LS; West PR; Mason RP
    Chem Biol Interact; 1986 Nov; 60(2):115-27. PubMed ID: 3024853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-trapping of methyl radical in the oxidative metabolism of 1,2-dimethylhydrazine.
    Augusto O; Du Plessis LR; Weingrill CL
    Biochem Biophys Res Commun; 1985 Jan; 126(2):853-8. PubMed ID: 2983693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic and non-enzymatic formation of free radicals from aflatoxin B1.
    Kodama M; Inoue F; Akao M
    Free Radic Res Commun; 1990; 10(3):137-42. PubMed ID: 2168856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron paramagnetic resonance spectrometry evidence for bioreduction of tirapazamine to oxidising free radicals under anaerobic conditions.
    Patterson LH; Taiwo FA
    Biochem Pharmacol; 2000 Dec; 60(12):1933-5. PubMed ID: 11108810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free radical intermediates during peroxidase oxidation of 2-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-4-methylphenol, and related phenol compounds.
    Valoti M; Sipe HJ; Sgaragli G; Mason RP
    Arch Biochem Biophys; 1989 Mar; 269(2):423-32. PubMed ID: 2537599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of peroxide- and globin-derived radicals from the reaction of methaemoglobin and metmyoglobin with t-butyl hydroperoxide: an ESR spin-trapping investigation.
    Van der Zee J
    Biochem J; 1997 Mar; 322 ( Pt 2)(Pt 2):633-9. PubMed ID: 9065787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic and nonenzymatic production of free radicals from the carcinogens 4-nitroquinoline N-oxide and 4-hydroxylaminoquinoline N-oxide.
    Fann YC; Metosh-Dickey CA; Winston GW; Sygula A; Rao DN; Kadiiska MB; Mason RP
    Chem Res Toxicol; 1999 May; 12(5):450-8. PubMed ID: 10328756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.