BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30069568)

  • 21. Discrimination of Three Panax Species Based on Differences in Volatile Organic Compounds Using a Static Headspace GC-MS-Based Metabolomics Approach.
    Chen XJ; Qiu JF; Wang YT; Wan JB
    Am J Chin Med; 2016; 44(3):663-76. PubMed ID: 27109159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Headspace SPME-GC-MS metabolomics analysis of urinary volatile organic compounds (VOCs).
    Zhang S; Raftery D
    Methods Mol Biol; 2014; 1198():265-72. PubMed ID: 25270935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species.
    Polizzi V; Adams A; Malysheva SV; De Saeger S; Van Peteghem C; Moretti A; Picco AM; De Kimpe N
    Fungal Biol; 2012 Sep; 116(9):941-53. PubMed ID: 22954337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of headspace solid-phase microextraction, headspace single-drop microextraction and hydrodistillation for chemical screening of volatiles in Myrtus communis L.
    Moradi M; Kaykhaii M; Ghiasvand AR; Shadabi S; Salehinia A
    Phytochem Anal; 2012; 23(4):379-86. PubMed ID: 22069217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of volatile organic compounds in the headspace above mold fungi by GC-soft X-radiation-based APCI-MS.
    Erler A; Riebe D; Beitz T; Löhmannsröben HG; Grothusheitkamp D; Kunz T; Methner FJ
    J Mass Spectrom; 2018 Oct; 53(10):911-920. PubMed ID: 29896877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acquisition of Volatile Compounds by Gas Chromatography-Mass Spectrometry (GC-MS).
    Vallarino JG; Erban A; Fehrle I; Fernie AR; Kopka J; Osorio S
    Methods Mol Biol; 2018; 1778():225-239. PubMed ID: 29761442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS.
    Stoppacher N; Kluger B; Zeilinger S; Krska R; Schuhmacher R
    J Microbiol Methods; 2010 May; 81(2):187-93. PubMed ID: 20302890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of headspace solid-phase microextraction and headspace sorptive extraction for the detection of the volatile metabolites produced by toxigenic Fusarium species.
    Demyttenaere JC; Moriña RM; De Kimpe N; Sandra P
    J Chromatogr A; 2004 Feb; 1027(1-2):147-54. PubMed ID: 14971496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).
    Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR
    Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.
    Robinson AL; Boss PK; Heymann H; Solomon PS; Trengove RD
    J Chromatogr A; 2011 Jan; 1218(3):504-17. PubMed ID: 21185026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of volatile components extracted from the peels of four different Chinese pomelos using TDS-GC-MS.
    Shao Q; Liu H; Zhang A; Wan Y; Hu R; Li M
    J Sci Food Agric; 2014 Dec; 94(15):3248-54. PubMed ID: 24683164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Profiling of headspace volatiles from Escherichia coli cultures using silicone-based sorptive media and thermal desorption GC-MS.
    Devaraj H; Pook C; Swift S; Aw KC; McDaid AJ
    J Sep Sci; 2018 Nov; 41(22):4133-4141. PubMed ID: 30156752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid discrimination of fungal strains isolated from human skin based on microbial volatile organic profiles.
    Belinato JR; Silva E; de Souza DS; Março PH; Valderrama P; do Prado RM; Bonugli-Santos RC; Pilau EJ; Porto C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Mar; 1110-1111():9-14. PubMed ID: 30776615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolomic profiling of plant tissues.
    Rambla JL; López-Gresa MP; Bellés JM; Granell A
    Methods Mol Biol; 2015; 1284():221-35. PubMed ID: 25757775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Needle Trap Device as a New Sampling and Preconcentration Approach for Volatile Organic Compounds of Herbal Medicines and its Application to the Analysis of Volatile Components in Viola tianschanica.
    Qin Y; Pang Y; Cheng Z
    Phytochem Anal; 2016 Nov; 27(6):364-374. PubMed ID: 27687791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of volatile organic compounds in pleural effusions by headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry.
    Huang Z; Zhang J; Zhang P; Wang H; Pan Z; Wang L
    J Sep Sci; 2016 Jul; 39(13):2544-52. PubMed ID: 27159330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of lipids, fatty acids and volatile compounds of various kumquat species using HS/GC/MS/FID techniques.
    Güney M; Oz AT; Kafkas E
    J Sci Food Agric; 2015 Apr; 95(6):1268-73. PubMed ID: 25044361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of a headspace trap gas chromatography and mass spectrometry method for the quantitative analysis of volatile compounds from degraded rapeseed oil.
    Sghaier L; Cordella CB; Rutledge DN; Watiez M; Breton S; Sassiat P; Thiebaut D; Vial J
    J Sep Sci; 2016 May; 39(9):1675-83. PubMed ID: 26990911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Volatile metabolomic signature of bladder cancer cell lines based on gas chromatography-mass spectrometry.
    Rodrigues D; Pinto J; Araújo AM; Monteiro-Reis S; Jerónimo C; Henrique R; de Lourdes Bastos M; de Pinho PG; Carvalho M
    Metabolomics; 2018 Apr; 14(5):62. PubMed ID: 30830384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of sub-ppb level vapor phase mixtures of biogenic volatile organic compounds from liquid phase standards and stepwise characterization of their volatilization properties by thermal desorption-gas chromatography-mass spectrometry.
    Iqbal MA; Kim KH
    J Chromatogr A; 2014 Dec; 1373():149-58. PubMed ID: 25464998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.