These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30069579)

  • 1. Correlation between 5-α reductase type 2 protein expression and methylation of 5-α reductase type 2 promotor gene of benign prostatic hyperplasia.
    Kang PM; Kim YJ; Seo WT; Kang SH; Kim TS; Chun BK; Seo WI; Jeong JY; Chung JI
    World J Urol; 2019 Apr; 37(4):709-718. PubMed ID: 30069579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age and Obesity Promote Methylation and Suppression of 5α-Reductase 2: Implications for Personalized Therapy of Benign Prostatic Hyperplasia.
    Bechis SK; Otsetov AG; Ge R; Wang Z; Vangel MG; Wu CL; Tabatabaei S; Olumi AF
    J Urol; 2015 Oct; 194(4):1031-7. PubMed ID: 25916673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced levels of 5-α reductase 2 in adult prostate tissue and implications for BPH therapy.
    Niu Y; Ge R; Hu L; Diaz C; Wang Z; Wu CL; Olumi AF
    Prostate; 2011 Sep; 71(12):1317-24. PubMed ID: 21308715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA methyl transferase 1 reduces expression of SRD5A2 in the aging adult prostate.
    Ge R; Wang Z; Bechis SK; Otsetov AG; Hua S; Wu S; Wu CL; Tabatabaei S; Olumi AF
    Am J Pathol; 2015 Mar; 185(3):870-82. PubMed ID: 25700986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Androgenic to oestrogenic switch in the human adult prostate gland is regulated by epigenetic silencing of steroid 5α-reductase 2.
    Wang Z; Hu L; Salari K; Bechis SK; Ge R; Wu S; Rassoulian C; Pham J; Wu CL; Tabatabaei S; Strand DW; Olumi AF
    J Pathol; 2017 Dec; 243(4):457-467. PubMed ID: 28940538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obesity-associated inflammation induces androgenic to estrogenic switch in the prostate gland.
    Xue B; Wu S; Sharkey C; Tabatabaei S; Wu CL; Tao Z; Cheng Z; Strand D; Olumi AF; Wang Z
    Prostate Cancer Prostatic Dis; 2020 Sep; 23(3):465-474. PubMed ID: 32029929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SRD5A1 and SRD5A2 are associated with treatment for benign prostatic hyperplasia with the combination of 5α-reductase inhibitors and α-adrenergic receptor antagonists.
    Gu X; Na R; Huang T; Wang L; Tao S; Tian L; Chen Z; Jiao Y; Kang J; Zheng S; Xu J; Sun J; Qi J
    J Urol; 2013 Aug; 190(2):615-9. PubMed ID: 23499746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cynomorium songaricum Rupr demonstrates phytoestrogenic or phytoandrogenic like activities that attenuates benign prostatic hyperplasia via regulating steroid 5-α-reductase.
    Tao R; Miao L; Yu X; Orgah JO; Barnabas O; Chang Y; Liu E; Fan G; Gao X
    J Ethnopharmacol; 2019 May; 235():65-74. PubMed ID: 30708032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Genetic and Epigenetic Markers to Improve Differential Diagnosis of Prostate Cancer and Benign Prostatic Hyperplasia by Noninvasive Methods in Mexican Patients.
    Sánchez BE; Aguayo A; Martínez B; Rodríguez F; Marmolejo M; Svyryd Y; Luna L; Muñoz LA; Jiménez MA; Sotomayor M; Vargas V F; Mutchinick OM
    Clin Genitourin Cancer; 2018 Aug; 16(4):e867-e877. PubMed ID: 29571584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effect of finasteride on the tissue androgen concentrations in benign prostatic hyperplasia.
    Habib FK; Ross M; Tate R; Chisholm GD
    Clin Endocrinol (Oxf); 1997 Feb; 46(2):137-44. PubMed ID: 9135694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Analysis of the SRD5A1 and SRD5A2 Genes in Patients with Benign Prostatic Hyperplasia with Regard to Metabolic Parameters and Selected Hormone Levels.
    Rył A; Rotter I; Grzywacz A; Małecka I; Skonieczna-Żydecka K; Grzesiak K; Słojewski M; Szylińska A; Sipak-Szmigiel O; Piasecka M; Walczakiewicz K; Laszczyńska M
    Int J Environ Res Public Health; 2017 Oct; 14(11):. PubMed ID: 29084161
    [No Abstract]   [Full Text] [Related]  

  • 12. Methylation of SRD5A2 promoter predicts a better outcome for castration-resistant prostate cancer patients undergoing androgen deprivation therapy.
    Wang Z; Deng T; Long X; Lin X; Wu S; Wang H; Ge R; Zhang Z; Wu CL; Taplin ME; Olumi AF
    PLoS One; 2020; 15(3):e0229754. PubMed ID: 32134978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucocorticoids are induced while dihydrotestosterone levels are suppressed in 5-alpha reductase inhibitor treated human benign prostate hyperplasia patients.
    Jin R; Forbes C; Miller NL; Strand D; Case T; Cates JM; Kim HH; Wages P; Porter NA; Mantione KM; Burke S; Mohler JL; Matusik RJ
    Prostate; 2022 Oct; 82(14):1378-1388. PubMed ID: 35821619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PTPIP51 mRNA and protein expression in tissue microarrays and promoter methylation of benign prostate hyperplasia and prostate carcinoma.
    Koch P; Petri M; Paradowska A; Stenzinger A; Sturm K; Steger K; Wimmer M
    Prostate; 2009 Dec; 69(16):1751-62. PubMed ID: 19691131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracts of
    Song KH; Seo CS; Yang WK; Gu HO; Kim KJ; Kim SH
    Nutrients; 2021 Mar; 13(3):. PubMed ID: 33803357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of Ligustri Lucidi Fructus with Ecliptae Herba and their phytoestrogen or phytoandrogen like active pharmaceutical ingredients alleviate oestrogen/testosterone-induced benign prostatic hyperplasia through regulating steroid 5-α-reductase.
    Tao R; Liu E; Zhao X; Han L; Yu B; Mao H; Yang W; Gao X
    Phytomedicine; 2022 Jul; 102():154169. PubMed ID: 35636178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence.
    Horning AM; Awe JA; Wang CM; Liu J; Lai Z; Wang VY; Jadhav RR; Louie AD; Lin CL; Kroczak T; Chen Y; Jin VX; Abboud-Werner SL; Leach RJ; Hernandez J; Thompson IM; Saranchuk J; Drachenberg D; Chen CL; Mai S; Huang TH
    Prostate; 2015 Nov; 75(15):1790-801. PubMed ID: 26332453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostate stem cell antigen mRNA expression in preoperatively negative biopsy specimens predicts subsequent cancer after transurethral resection of the prostate for benign prostatic hyperplasia.
    Zhao Z; Liu J; Li S; Shen W
    Prostate; 2009 Sep; 69(12):1292-302. PubMed ID: 19462463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chrysophanic acid reduces testosterone-induced benign prostatic hyperplasia in rats by suppressing 5α-reductase and extracellular signal-regulated kinase.
    Youn DH; Park J; Kim HL; Jung Y; Kang J; Jeong MY; Sethi G; Seok Ahn K; Um JY
    Oncotarget; 2017 Feb; 8(6):9500-9512. PubMed ID: 27880726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor suppressor function of PGP9.5 is associated with epigenetic regulation in prostate cancer--novel predictor of biochemical recurrence after radical surgery.
    Mitsui Y; Shiina H; Hiraki M; Arichi N; Hiraoka T; Sumura M; Honda S; Yasumoto H; Igawa M
    Cancer Epidemiol Biomarkers Prev; 2012 Mar; 21(3):487-96. PubMed ID: 22246902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.