BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30069671)

  • 1. B7S1, a novel candidate for anti-tumor checkpoint blockade immunotherapy.
    Chen X; Ye L
    Sci China Life Sci; 2018 Sep; 61(9):1132-1134. PubMed ID: 30069671
    [No Abstract]   [Full Text] [Related]  

  • 2. New checkpoints in cancer immunotherapy.
    Ni L; Dong C
    Immunol Rev; 2017 Mar; 276(1):52-65. PubMed ID: 28258699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intratumoral CD8
    Held W; Siddiqui I; Schaeuble K; Speiser DE
    Sci Transl Med; 2019 Oct; 11(515):. PubMed ID: 31645454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential targeting of B7-H4 for the treatment of cancer.
    Podojil JR; Miller SD
    Immunol Rev; 2017 Mar; 276(1):40-51. PubMed ID: 28258701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3.
    Janakiram M; Shah UA; Liu W; Zhao A; Schoenberg MP; Zang X
    Immunol Rev; 2017 Mar; 276(1):26-39. PubMed ID: 28258693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and cancer immunotherapy of the B7 family member B7x.
    Jeon H; Vigdorovich V; Garrett-Thomson SC; Janakiram M; Ramagopal UA; Abadi YM; Lee JS; Scandiuzzi L; Ohaegbulam KC; Chinai JM; Zhao R; Yao Y; Mao Y; Sparano JA; Almo SC; Zang X
    Cell Rep; 2014 Nov; 9(3):1089-98. PubMed ID: 25437562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy.
    Li C; Li W; Xiao J; Jiao S; Teng F; Xue S; Zhang C; Sheng C; Leng Q; Rudd CE; Wei B; Wang H
    EMBO Mol Med; 2015 Jun; 7(6):754-69. PubMed ID: 25851535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cancer immunotherapy by immuno-checkpoint blockade].
    Kawakami Y
    Rinsho Ketsueki; 2015 Oct; 56(10):2186-94. PubMed ID: 26458459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autocrine Complement Inhibits IL10-Dependent T-cell-Mediated Antitumor Immunity to Promote Tumor Progression.
    Wang Y; Sun SN; Liu Q; Yu YY; Guo J; Wang K; Xing BC; Zheng QF; Campa MJ; Patz EF; Li SY; He YW
    Cancer Discov; 2016 Sep; 6(9):1022-35. PubMed ID: 27297552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tumour glyco-code as a novel immune checkpoint for immunotherapy.
    RodrÍguez E; Schetters STT; van Kooyk Y
    Nat Rev Immunol; 2018 Mar; 18(3):204-211. PubMed ID: 29398707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system.
    Pico de Coaña Y; Choudhury A; Kiessling R
    Trends Mol Med; 2015 Aug; 21(8):482-91. PubMed ID: 26091825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges.
    Kyi C; Postow MA
    Immunotherapy; 2016 Jun; 8(7):821-37. PubMed ID: 27349981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards In Silico Prediction of the Immune-Checkpoint Blockade Response.
    Chen K; Ye H; Lu XJ; Sun B; Liu Q
    Trends Pharmacol Sci; 2017 Dec; 38(12):1041-1051. PubMed ID: 29089139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of neoantigens in response to immune checkpoint blockade.
    Riaz N; Morris L; Havel JJ; Makarov V; Desrichard A; Chan TA
    Int Immunol; 2016 Aug; 28(8):411-9. PubMed ID: 27048318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Not Available].
    Senant M; Giusti D; Weiss L; Dragon-Durey MA
    Bull Cancer; 2016 Nov; 103 Suppl 1():S175-S185. PubMed ID: 28057182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Part I: Checkpoint inhibitors in cancer therapy.
    Daud AI
    Immunotherapy; 2016 Jun; 8(6):675-6. PubMed ID: 27197535
    [No Abstract]   [Full Text] [Related]  

  • 18. The path to reactivation of antitumor immunity and checkpoint immunotherapy.
    Kim HJ; Cantor H
    Cancer Immunol Res; 2014 Oct; 2(10):926-36. PubMed ID: 25281320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neoantigen heterogeneity: a key driver of immune response and sensitivity to immune checkpoint blockade?
    Furness AJ; Quezada SA; Peggs KS
    Immunotherapy; 2016 Jun; 8(7):763-6. PubMed ID: 27349975
    [No Abstract]   [Full Text] [Related]  

  • 20. Pseudoprogression and hyperprogression after checkpoint blockade.
    Wang Q; Gao J; Wu X
    Int Immunopharmacol; 2018 May; 58():125-135. PubMed ID: 29579717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.