These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 30069714)
1. Potential Dip in Organic Photovoltaics Probed by Cross-sectional Kelvin Probe Force Microscopy. Lee J; Kong J Nanoscale Res Lett; 2018 Aug; 13(1):228. PubMed ID: 30069714 [TBL] [Abstract][Full Text] [Related]
2. High-low Kelvin probe force spectroscopy for measuring the interface state density. Izumi R; Miyazaki M; Li YJ; Sugawara Y Beilstein J Nanotechnol; 2023; 14():175-189. PubMed ID: 36761682 [TBL] [Abstract][Full Text] [Related]
3. Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation. Fernández Garrillo PA; Grévin B; Borowik Ł Beilstein J Nanotechnol; 2018; 9():1834-1843. PubMed ID: 30013877 [TBL] [Abstract][Full Text] [Related]
4. Implementation of data-cube pump-probe KPFM on organic solar cells. Grévin B; Bardagot O; Demadrille R Beilstein J Nanotechnol; 2020; 11():323-337. PubMed ID: 32117670 [TBL] [Abstract][Full Text] [Related]
5. Melt-processing of small molecule organic photovoltaics Rahmanudin A; Yao L; Jeanbourquin XA; Liu Y; Sekar A; Ripaud E; Sivula K Green Chem; 2018 May; 20(10):2218-2224. PubMed ID: 29904283 [TBL] [Abstract][Full Text] [Related]
6. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor-acceptor dyads. Grévin B; Schwartz PO; Biniek L; Brinkmann M; Leclerc N; Zaborova E; Méry S Beilstein J Nanotechnol; 2016; 7():799-808. PubMed ID: 27335768 [TBL] [Abstract][Full Text] [Related]
7. A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells. Al-Azzawi AGS; Aziz SB; Dannoun EMA; Iraqi A; Nofal MM; Murad AR; M Hussein A Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616512 [TBL] [Abstract][Full Text] [Related]
8. Intensity-modulated scanning Kelvin probe microscopy for probing recombination in organic photovoltaics. Shao G; Glaz MS; Ma F; Ju H; Ginger DS ACS Nano; 2014 Oct; 8(10):10799-807. PubMed ID: 25207675 [TBL] [Abstract][Full Text] [Related]
9. Interface Electrode Morphology Effect on Carrier Concentration and Trap Defect Density in an Organic Photovoltaic Device. Kesavan AV; Rao AD; Ramamurthy PC ACS Appl Mater Interfaces; 2017 Aug; 9(34):28774-28784. PubMed ID: 28749650 [TBL] [Abstract][Full Text] [Related]
10. Probing the Energy Level Alignment and the Correlation with Open-Circuit Voltage in Solution-Processed Polymeric Bulk Heterojunction Photovoltaic Devices. Yang QD; Li HW; Cheng Y; Guan Z; Liu T; Ng TW; Lee CS; Tsang SW ACS Appl Mater Interfaces; 2016 Mar; 8(11):7283-90. PubMed ID: 26926667 [TBL] [Abstract][Full Text] [Related]
11. Constructing Nanostructured Donor/Acceptor Bulk Heterojunctions via Interfacial Templates for Efficient Organic Photovoltaics. Wang Z; Zhou Y; Miyadera T; Chikamatsu M; Yoshida Y ACS Appl Mater Interfaces; 2017 Dec; 9(50):43893-43901. PubMed ID: 29172420 [TBL] [Abstract][Full Text] [Related]
12. Remote Gating of Schottky Barrier for Transistors and Their Vertical Integration. Choi YJ; Kim S; Woo HJ; Song YJ; Lee Y; Kang MS; Cho JH ACS Nano; 2019 Jul; 13(7):7877-7885. PubMed ID: 31245996 [TBL] [Abstract][Full Text] [Related]
13. Measuring the Thickness and Potential Profiles of the Space-Charge Layer at Organic/Organic Interfaces under Illumination and in the Dark by Scanning Kelvin Probe Microscopy. Rojas GA; Wu Y; Haugstad G; Frisbie CD ACS Appl Mater Interfaces; 2016 Mar; 8(9):5772-6. PubMed ID: 26890658 [TBL] [Abstract][Full Text] [Related]
15. Study of charge separation and interface formation in a single nanorod CdS-Cu(x)S heterojunction solar cell using Kelvin probe force microscopy. Gupta S; Batra Y; Mehta BR; Satsangi VR Nanotechnology; 2013 Jun; 24(25):255703. PubMed ID: 23708491 [TBL] [Abstract][Full Text] [Related]
16. Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell. Zeng TW; Ho CC; Tu YC; Tu GY; Wang LY; Su WF Langmuir; 2011 Dec; 27(24):15255-60. PubMed ID: 22050188 [TBL] [Abstract][Full Text] [Related]
17. Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy. Noh H; Diaz AJ; Solares SD Beilstein J Nanotechnol; 2017; 8():579-589. PubMed ID: 28382247 [TBL] [Abstract][Full Text] [Related]
18. Electron donor and acceptor spatial distribution in structured bulk heterojunction photovoltaic devices induced by periodic photopolymerization. Watanabe S; Fukuchi Y; Fukasawa M; Sassa T; Uchiyama M; Yamashita T; Matsumoto M; Aoyama T Langmuir; 2012 Jul; 28(28):10305-9. PubMed ID: 22712653 [TBL] [Abstract][Full Text] [Related]
19. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO Wu F; Qiao Q; Bahrami B; Chen K; Pathak R; Tong Y; Li X; Zhang T; Jian R Nanotechnology; 2018 May; 29(21):215403. PubMed ID: 29521645 [TBL] [Abstract][Full Text] [Related]
20. Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere. Knotek P; Plecháček T; Smolík J; Kutálek P; Dvořák F; Vlček M; Navrátil J; Drašar Č Beilstein J Nanotechnol; 2019; 10():1401-1411. PubMed ID: 31431852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]