These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30069911)

  • 21. Transient induced gamma-band response in EEG as a manifestation of miniature saccades.
    Yuval-Greenberg S; Tomer O; Keren AS; Nelken I; Deouell LY
    Neuron; 2008 May; 58(3):429-41. PubMed ID: 18466752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prepare for conflict: EEG correlates of the anticipation of target competition during overt and covert shifts of visual attention.
    Kelly SP; Foxe JJ; Newman G; Edelman JA
    Eur J Neurosci; 2010 May; 31(9):1690-700. PubMed ID: 20525082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area.
    Colby CL; Duhamel JR; Goldberg ME
    J Neurophysiol; 1996 Nov; 76(5):2841-52. PubMed ID: 8930237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The presaccadic cortical negativity prior to self-paced saccades with and without visual guidance.
    Klostermann W; Kömpf D; Heide W; Verleger R; Wauschkuhn B; Seyfert T
    Electroencephalogr Clin Neurophysiol; 1994 Sep; 91(3):219-28. PubMed ID: 7522151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dealing with ocular artifacts on lateralized ERPs in studies of visual-spatial attention and memory: ICA correction versus epoch rejection.
    Drisdelle BL; Aubin S; Jolicoeur P
    Psychophysiology; 2017 Jan; 54(1):83-99. PubMed ID: 28000252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The phase of ongoing EEG oscillations predicts the amplitude of peri-saccadic mislocalization.
    McLelland D; Lavergne L; VanRullen R
    Sci Rep; 2016 Jul; 6():29335. PubMed ID: 27403937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for a role of corrective eye movements during gaze fixation in saccade planning.
    Pérez Zapata L; Solé Puig M; Aznar-Casanova JA; Supèr H
    Eur J Neurosci; 2015 Jan; 41(2):227-33. PubMed ID: 25359297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complementary effects of gaze direction and early saliency in guiding fixations during free viewing.
    Borji A; Parks D; Itti L
    J Vis; 2014 Nov; 14(13):3. PubMed ID: 25371549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The maturation of eye movement behavior: scene viewing characteristics in children and adults.
    Helo A; Pannasch S; Sirri L; Rämä P
    Vision Res; 2014 Oct; 103():83-91. PubMed ID: 25152319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A temporal dependency account of attentional inhibition in oculomotor control.
    Weaver MD; van Zoest W; Hickey C
    Neuroimage; 2017 Feb; 147():880-894. PubMed ID: 27836709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial statistics and attentional dynamics in scene viewing.
    Engbert R; Trukenbrod HA; Barthelmé S; Wichmann FA
    J Vis; 2015 Jan; 15(1):15.1.14. PubMed ID: 25589298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microsaccade-related brain potentials signal the focus of visuospatial attention.
    Meyberg S; Werkle-Bergner M; Sommer W; Dimigen O
    Neuroimage; 2015 Jan; 104():79-88. PubMed ID: 25285375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory.
    Mazzoni P; Bracewell RM; Barash S; Andersen RA
    J Neurophysiol; 1996 Sep; 76(3):1439-56. PubMed ID: 8890265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective enhancement of orientation tuning before saccades.
    Ohl S; Kuper C; Rolfs M
    J Vis; 2017 Nov; 17(13):2. PubMed ID: 29094147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the reduced influence of contour on saccade metrics and its competition with stimulus size.
    Massendari D; Tandonnet C; Vitu F
    Vision Res; 2014 Aug; 101():158-66. PubMed ID: 25003561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disentangling bottom-up versus top-down and low-level versus high-level influences on eye movements over time.
    Schütt HH; Rothkegel LOM; Trukenbrod HA; Engbert R; Wichmann FA
    J Vis; 2019 Mar; 19(3):1. PubMed ID: 30821809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid Extraction of the Spatial Distribution of Physical Saliency and Semantic Informativeness from Natural Scenes in the Human Brain.
    Kiat JE; Hayes TR; Henderson JM; Luck SJ
    J Neurosci; 2022 Jan; 42(1):97-108. PubMed ID: 34750229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal.
    Goldberg ME; Bruce CJ
    J Neurophysiol; 1990 Aug; 64(2):489-508. PubMed ID: 2213128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fixation-related potentials in visual search: a combined EEG and eye tracking study.
    Kamienkowski JE; Ison MJ; Quiroga RQ; Sigman M
    J Vis; 2012 Jul; 12(7):4. PubMed ID: 22776848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Attentional competition across saccadic eye movements.
    Poth CH; Schneider WX
    Acta Psychol (Amst); 2018 Oct; 190():27-37. PubMed ID: 29986208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.